COMMON FIXED-POINT RESULTS FOR RATIONL TYPE CONTRACTIONS

ANGEL A PEREIRA, Research Scholar, Department of Mathematics, Women's Christian College, Nagercoil, Tamil Nadu, India angel.alencier@gmail.com
S. N. LEENA NELSON , Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil, Tamil Nadu, India, leena.wcc@gmail.com

Abstract

In this study, we demonstrate a few fixed-point results involving contractions of the rational type in the generalised 2-Banach space. Our findings broaden standard common fixed-point theorems of contractive type mappings in the new context.

Keywords

2-Banach Space, Generalized Banach Space, generalized 2-Banach Space, Common Fixed-Point, Altering Distance Function.

1. INTRODUCTION.

Banach Fixed-point theorem is also known as contraction mapping theorem or contraction mapping principle. Banach fixed-point theorem was named after Stefan Banach. Banach fixed-point theorem guarantees the existence and uniqueness of fixed points of certain self-maps. 2-norm and n-norm on a linear space was introduced by S. Gahler in 1963. The metric fixed-point theory is a vast field of study and it is capable of solving many mathematical equations. It has a wide range of applications in many fields of science. Czerwik needs an extension of metric space to overcome the problem of measurable functions with respect to a measure and their convergence. He proved a generalized fixed-point theorem in b-metric space [9,10]. The notion of b-metric spaces was introduced by Bakhtin [2] In 1989, which was formally defined by Czerwik [8] in 1993 with a view of generalizing Banach contraction principle. There are many authors who have worked on the generalization of fixed-point theorems in b-metric spaces. In particular, the extension of fixed-point theorem in generalized Banach space was studied by many researchers.

2. PRELIMIARIES.

Definition 2.1. [4] If $S \neq \varphi$ is a linear space having $a(\geq 0) \in \mathbb{R}$, let $\|$. $\|$ denotes a function from linear space S into \mathbb{R} that satisfies the following axioms:

- For all $p \in S,\|p\|=0$ if and only if $p=0$
- For all $p, q \in S,\|p+q\| \leq a\{\|p\|+\|q\|\}$
- For all $p \in S, \alpha \in \mathbb{R},\|\alpha p\|=|\alpha|\|p\|$
$\|p\|$ is called norm of p and $(S,\|\cdot\|)$ is called generalized normed linear space. If for $a=1$, it reduces to standard normed linear space.
Definition 2.2. [4] A Banach space $(S,\|\|$.$) is a normed vector space such that S$ is complete under the metric induced by the $\|$.$\| .$
Definition 2.3. [4] A linear generalized normed space in which every sequence is convergent is called generalized Banach Space.
Definition 2.4. [4] Let $(S,\|\|$.$) be a generalized normed linear space then the sequence \left\{p_{u}\right\}$ in S is called Cauchy sequence if and only if for all $\epsilon>0$, there exists $u(\epsilon) \in \mathbb{N}$ such that for each $t, u \geq u(\epsilon)$ we have $\left\|p_{u}-p_{t}\right\|<\epsilon$.
Definition 2.5. [4] Let ($S,\|$.$\|) be a generalized normed linear space then the sequence \left\{p_{u}\right\}$ in S is called Convergent sequence if and only if there exists $p \in S$ such that for all $\epsilon>0$, there exists $u(\epsilon) \in \mathbb{N}$ such that for each $u \geq u(\epsilon)$ we have $\left\|p_{u}-p\right\|<\epsilon$.
Definition 2.6. [4] The generalized Banach Space is Complete if every Cauchy sequence converges.

Lemma 2.1. [16] Let $(S,\|\|$.$) be a generalized Banach space and let \left\{p_{u}\right\}$ be a Cauchy sequence in S such that $p_{t} \neq p_{u}$ whenever $t \neq u$. Then $\left\{p_{u}\right\}$ converges to atmost one point.

Proof:

Suppose that $\lim _{u \rightarrow \infty} p_{u}=p$ and $\lim _{u \rightarrow \infty} p_{u}=q$
Let us conversely assume that $p \neq q$.
Which implies p and q are distinct elements
Since, p_{t} and p_{u} are distinct elements, it is clear that there exists $\wp \in \mathbb{N}$ such that p_{u} is different from p and q for all $u>\wp$
For $t, u>\wp$, implies that

$$
\|p-q\| \leq a\left\{\left\|p-p_{u}\right\|+\left\|p_{u}-q\right\|\right\}
$$

Letting $u \rightarrow \infty$,
We have $\|p-q\|=0$,
$\Rightarrow p=q$, which is a contradiction.

3. MAIN RESULTS

Theorem 3.1. Let $(S,\|.,\|$.$) be a generalized 2-Banach space with a \geq 1$ and let $K, L: S \rightarrow S$ be an increasing mapping with respect to ${ }^{\prime} \leq^{\prime}$ such that there exists an element $p_{0} \in S$ with $p_{0} \leq K p_{0}$ and $p_{0} \leq$ $L p_{0}$. Suppose that

$$
a^{2}\|K p-L q, s\| \leq \lambda(\zeta[(p, q), s])
$$

Where $\zeta[(p, q), s]=\max \left\{\|p-q, s\|, \frac{\|p-K p, s\|\| \| q-L q, s \|}{1+\|K p-L q, s\|}\right\}$ for $\lambda \in \Lambda$ and for all $p, q \in S$ with p, q comparable. Then K and L has a unique fixed point, if K and L is continuous. In addition, the set of fixed points of K and L is well ordered if and only if K and L has a unique common fixed point.

Proof:

Let $p_{0} \in S, p_{0} \leq K p_{0}$ and $p_{0} \leq L p_{0}$
Also, K and L are increasing mapping. By induction, we obtain that

$$
\begin{gathered}
p_{0} \leq K p_{0} \leq K^{2} p_{0} \leq \cdots \leq K^{u} p_{0} \leq K^{u+1} p_{0} \leq \cdots \\
p_{0} \leq L p_{0} \leq L^{2} p_{0} \leq \cdots \leq L^{u} p_{0} \leq L^{u+1} p_{0} \leq \cdots
\end{gathered}
$$

Define the sequence p_{u} by $p_{2 u+1}=K p_{2 u}$ and $p_{2 u+2}=L p_{2 u+1}$ for all $u \geq 0$.
Let $p_{u}=K^{u} p_{0}$ and $p_{u}=L^{u} p_{0}$, we have

$$
\begin{gathered}
p_{0} \leq p_{1} \leq p_{2} \leq \cdots \leq p_{u} \leq p_{u+1} \leq \cdots \\
a^{2}\left\|p_{2 u+1}-p_{2 u+2}, s\right\|=a^{2}\left\|K p_{2 u}-L p_{2 u+1}, s\right\| \\
\leq \lambda\left(\zeta\left[\left(p_{2 u}, p_{2 u+1}\right), s\right]\right)
\end{gathered}
$$

By Mathematical induction, we obtain
Uniqueness of common fixed point:
Now if w be another fixed point of K. Then $K w=w$ then,

$$
\left\|p^{*}-K w, s\right\| \leq a\left[\left\|p^{*}-p_{u}, s\right\|+\left\|p_{u}-K w, s\right\|\right]
$$

Letting $u \rightarrow \infty$ and using continuity of K, we get

$$
\lim _{u \rightarrow \infty}\left\|p^{*}-K w, s\right\| \leq 0
$$

Theorem 3.2. Let $(S,\|.,\|$.$) be a generalized 2-Banach space with a \geq 1$ and let $K, L: S \rightarrow S$ be an increasing mapping with respect to ' \leq^{\prime} such that there exists an element $p_{0} \in S$ with $p_{0} \leq K p_{0}$ and $p_{0} \leq$ $L p_{0}$. Also, K and L satisfies the following condition

$$
\begin{equation*}
\|K p-L q, s\| \leq \delta[\|p-q, s\|] \beta[(p, q), s] \tag{1}
\end{equation*}
$$

For all $p, q \in S$ are comparable, where a function $\delta:[0, \infty) \rightarrow\left[0, \frac{1}{a}\right]$ satisfies the condition $\underset{u \rightarrow \infty}{\lim \sup } \delta\left(k_{u}\right)=\frac{1}{a}$ implies $\lim _{u \rightarrow \infty} k_{u}=0$ and

$$
\beta[(p, q), s]=\max \left\{\begin{array}{c}
\|p-q, s\|, \\
\frac{\|p-K p, s\| \cdot\|q-L q, s\|}{1+\|K p-L q, s\|}, \\
\frac{\|p-K p, s\| \cdot\|q-L q, s\|}{1+\|p-q, s\|}, \\
\frac{\|p-K p, s\| \cdot\|p-L q, s\|}{1+\|p-K q, s\| \cdot\|q-L q, s\|}
\end{array}\right\}
$$

If K and L is continuous, then K and L has unique fixed-point.

Proof.

Let $p_{0} \in S, p_{0} \leq K p_{0}$ and $p_{0} \leq L p_{0}$
Also, K and L are increasing mapping. By induction, we obtain that $p_{0} \leq K p_{0} \leq K^{2} p_{0} \leq \cdots \leq K^{u} p_{0} \leq$ $K^{u+1} p_{0} \leq p_{0} \leq L p_{0} \leq L^{2} p_{0} \leq \cdots \leq L^{u} p_{0} \leq L^{u+1} p_{0} \leq \cdots$
We will prove that $\lim _{u \rightarrow \infty}\left\|p_{2 u+1}-p_{2 u+2}, s\right\|=0$
since, $p_{2 u+1} \leq p_{2 u+1} \forall u \in \mathbb{N}$. By (6), we have $\left\|p_{2 u+1}-p_{2 u+2}, s\right\|=\left\|K p_{2 u}-L p_{2 u+1}, s\right\|$
(Since $a>1$) hence $v=0$

$$
\Rightarrow \lim _{u \rightarrow \infty}\left\|p_{2 u+1}-p_{2 u+2}, s\right\|
$$

First suppose that $p_{2 u}=p_{2 t}$ for some $u>t$, so we have, $p_{2 u+1}=K p_{2 u}=K p_{2 t}=p_{2 t+1}, p_{2 u+1}=L p_{2 u}=$ $L p_{2 t}=p_{2 t+1}$
By continuing this process,

$$
p_{2 u+\wp}=p_{2 t+\wp} \text { for } \wp \in \mathbb{N}
$$

Thus, we can assume that $p_{2 u} \neq p_{2 t}$ for $u \neq t$.
We deduce that $\lim _{u, t \rightarrow \infty}\left\|p_{2 u}-p_{2 t}, s\right\|=0$
Consequently, $\left\{p_{2 u}\right\}$ is a Cauchy sequence in K and so is $\left\{p_{u}\right\}$
$\therefore p^{*}$ is the unique common fixed point of K and L
This completes the proof.

REFERENCES:

[1] Hassen Aydi, Monica-Felicia Bota, Erdal Karapınar, and Slobodanka Mitrovic. A fixed-point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory and Applications, 2012(1):18, 2012.
[2] IA0748 Bakhtin. The contraction mapping principle in quasimetric spaces. Func. An., Gos.Ped. Inst. Unianowsk, 30:26-37, 1989.
[3] V Berinde. Generalized contractions in quasimetric spaces. In Seminar on Fixed Point Theory, volume 3, 1993.
[4] Ramakant Bhardwaj, Balaji R Wadkar, and Basant Singh. Fixed point theorems in generalized banach space. International journal of Computer and Mathematical Sciences (IJCMS),ISSN, pages 2347-8527, 2015.
[5] M Boriceanu. Strict fixed point theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math, 4(3):285-301, 2009.
[6] plied Analysis, volume 2011. Hindawi, 2011.

