COMMON FIXED-POINT RESULTS FOR RATIONL TYPE CONTRACTIONS

ANGEL A PEREIRA, Research Scholar, Department of Mathematics, Women's Christian College, Nagercoil, Tamil Nadu, India angel.alencier@gmail.com

S. N. LEENA NELSON, Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil, Tamil Nadu, India , leena.wcc@gmail.com

ABSTRACT

In this study, we demonstrate a few fixed-point results involving contractions of the rational type in the generalised 2-Banach space. Our findings broaden standard common fixed-point theorems of contractive type mappings in the new context.

Keywords

2-Banach Space, Generalized Banach Space, generalized 2-Banach Space, Common Fixed-Point, Altering Distance Function.

1. INTRODUCTION.

Banach Fixed-point theorem is also known as contraction mapping theorem or contraction mapping principle. Banach fixed-point theorem was named after Stefan Banach. Banach fixed-point theorem guarantees the existence and uniqueness of fixed points of certain self-maps. 2-norm and *n*-norm on a linear space was introduced by S. Gahler in 1963. The metric fixed-point theory is a vast field of study and it is capable of solving many mathematical equations. It has a wide range of applications in many fields of science. Czerwik needs an extension of metric space to overcome the problem of measurable functions with respect to a measure and their convergence. He proved a generalized fixed-point theorem in *b*-metric space [9,10]. The notion of b-metric spaces was introduced by Bakhtin [2] In 1989, which was formally defined by Czerwik [8] in 1993 with a view of generalizing Banach contraction principle. There are many authors who have worked on the generalization of fixed-point theorems in *b*-metric spaces. In particular, the extension of fixed-point theorem in generalized Banach space was studied by many researchers.

2. PRELIMIARIES.

Definition 2.1. [4] If $S \neq \varphi$ is a linear space having $a \geq 0 \in \mathbb{R}$, let $\|.\|$ denotes a function from linear space *S* into \mathbb{R} that satisfies the following axioms:

- For all $p \in S$, ||p|| = 0 if and only if p = 0
- For all $p, q \in S$, $||p + q|| \le a\{||p|| + ||q||\}$
- For all $p \in S, \alpha \in \mathbb{R}$, $||\alpha p|| = |\alpha|||p||$

||p|| is called norm of p and (S, ||.||) is called generalized normed linear space. If for a = 1, it reduces to standard normed linear space.

Definition 2.2. [4] A Banach space $(S, \|.\|)$ is a normed vector space such that S is complete under the metric induced by the $\|.\|$.

Definition 2.3. [4] A linear generalized normed space in which every sequence is convergent is called generalized Banach Space.

Definition 2.4. [4] Let $(S, \|.\|)$ be a generalized normed linear space then the sequence $\{p_u\}$ in S is called Cauchy sequence if and only if for all $\epsilon > 0$, there exists $u(\epsilon) \in \mathbb{N}$ such that for each $t, u \ge u(\epsilon)$ we have $\|p_u - p_t\| < \epsilon$.

Definition 2.5. [4] Let $(S, \|.\|)$ be a generalized normed linear space then the sequence $\{p_u\}$ in S is called Convergent sequence if and only if there exists $p \in S$ such that for all $\epsilon > 0$, there exists $u(\epsilon) \in \mathbb{N}$ such that for each $u \ge u(\epsilon)$ we have $||p_u - p|| < \epsilon$.

Definition 2.6. [4] The generalized Banach Space is Complete if every Cauchy sequence converges.

Lemma 2.1. [16] Let (S, ||.||) be a generalized Banach space and let $\{p_u\}$ be a Cauchy sequence in S such that $p_t \neq p_u$ whenever $t \neq u$. Then $\{p_u\}$ converges to atmost one point.

Proof:

Suppose that $\lim_{u\to\infty} p_u = p$ and $\lim_{u\to\infty} p_u = q$

Let us conversely assume that $p \neq q$.

Which implies p and q are distinct elements

Since, p_t and p_u are distinct elements, it is clear that there exists $\wp \in \mathbb{N}$ such that p_u is different from p and q for all $u > \wp$

For $t, u > \wp$, implies that

$$||p - q|| \le a\{||p - p_u|| + ||p_u - q||\}$$

Letting $u \to \infty$, We have ||p - q|| = 0, $\Rightarrow p = q$, which is a contradiction.

3. MAIN RESULTS

Theorem 3.1. Let $(S, \|., \|)$ be a generalized 2-Banach space with $a \ge 1$ and let $K, L: S \to S$ be an increasing mapping with respect to $' \le '$ such that there exists an element $p_0 \in S$ with $p_0 \le Kp_0$ and $p_0 \le Lp_0$. Suppose that

$$a^2 \|Kp - Lq, s\| \le \lambda(\zeta[(p,q), s])$$

Where $\zeta[(p,q),s] = max \left\{ ||p-q,s||, \frac{||p-Kp,s||.||q-Lq,s||}{1+||Kp-Lq,s||} \right\}$ for $\lambda \in \Lambda$ and for all $p,q \in S$ with p,q comparable.

Then K and L has a unique fixed point, if K and L is continuous. In addition, the set of fixed points of K and L is well ordered if and only if K and L has a unique common fixed point.

Proof:

Let $p_0 \in S$, $p_0 \leq Kp_0$ and $p_0 \leq Lp_0$ Also, K and L are increasing mapping. By induction, we obtain that $p_0 \leq Kp_0 \leq K^2p_0 \leq \cdots \leq K^up_0 \leq K^{u+1}p_0 \leq \cdots$ $p_0 \leq Lp_0 \leq L^2p_0 \leq \cdots \leq L^up_0 \leq L^{u+1}p_0 \leq \cdots$ Define the sequence p_u by $p_{2u+1} = Kp_{2u}$ and $p_{2u+2} = Lp_{2u+1}$ for all $u \geq 0$. Let $p_u = K^up_0$ and $p_u = L^up_0$, we have $p_0 \leq p_1 \leq p_2 \leq \cdots \leq p_u \leq p_{u+1} \leq \cdots$ $a^2 ||p_{2u+1} - p_{2u+2}, s|| = a^2 ||Kp_{2u} - Lp_{2u+1}, s||$ $\leq \lambda(\zeta[(p_{2u}, p_{2u+1}), s])$ By Mathematical induction, we obtain **Uniqueness of common fixed point:** Now if w be another fixed point of K. Then Kw = w then, $||p^* - Kw, s|| \leq a[||p^* - p_u, s|| + ||p_u - Kw, s||]$

Letting $u \to \infty$ and using continuity of *K*, we get

$$\lim_{y\to\infty} \|p^* - Kw, s\| \le 0$$

Theorem 3.2. Let $(S, \|., \|)$ be a generalized 2-Banach space with $a \ge 1$ and let $K, L: S \to S$ be an increasing mapping with respect to $' \le '$ such that there exists an element $p_0 \in S$ with $p_0 \le Kp_0$ and $p_0 \le Lp_0$. Also, K and L satisfies the following condition

$$\|Kp - Lq, s\| \le \delta[\|p - q, s\|]\beta[(p, q), s]$$
(1)

For all $p, q \in S$ are comparable, where a function $\delta: [0, \infty) \to \left[0, \frac{1}{a}\right]$ satisfies the condition $\lim \sup \delta(k_u) = \frac{1}{a} \text{ implies } \lim_{u \to \infty} k_u = 0 \text{ and}$

$$\beta[(p,q),s] = \max \left\{ \begin{array}{l} \|p-q,s\|, \\ \frac{\|p-Kp,s\|, \|q-Lq,s\|}{1+\|Kp-Lq,s\|}, \\ \frac{\|p-Kp,s\|, \|q-Lq,s\|}{1+\|p-q,s\|}, \\ \frac{\|p-Kp,s\|, \|p-Lq,s\|}{1+\|p-Kq,s\|, \|q-Lq,s\|} \end{array} \right\}$$

If K and L is continuous, then K and L has unique fixed-point. **Proof.**

Let $p_0 \in S$, $p_0 \leq Kp_0$ and $p_0 \leq Lp_0$ Also, K and L are increasing mapping. By induction, we obtain that $p_0 \leq K p_0 \leq K^2 p_0 \leq \cdots \leq K^u p_0 \leq$ $\begin{aligned} K^{u+1}p_0 &\leq p_0 \leq Lp_0 \leq L^2 p_0 \leq \cdots \leq L^u p_0 \leq L^{u+1} p_0 \leq \cdots \\ \text{We will prove that } \lim_{u \to \infty} \|p_{2u+1} - p_{2u+2}, s\| = 0 \\ \text{since, } p_{2u+1} \leq p_{2u+1} \forall u \in \mathbb{N}. \text{ By (6), we have} \|p_{2u+1} - p_{2u+2}, s\| = \|Kp_{2u} - Lp_{2u+1}, s\| \end{aligned}$

(Since a > 1) hence v = 0

$$\Rightarrow \lim_{u\to\infty} \|p_{2u+1} - p_{2u+2}, s\|$$

First suppose that $p_{2u} = p_{2t}$ for some u > t, so we have, $p_{2u+1} = Kp_{2u} = Kp_{2t} = p_{2t+1}$, $p_{2u+1} = Lp_{2u} = Lp_{2u}$ $Lp_{2t} = p_{2t+1}$ By continuing this process,

$$p_{2u+\wp} = p_{2t+\wp}$$
 for $\wp \in \mathbb{N}$

Thus, we can assume that $p_{2u} \neq p_{2t}$ for $u \neq t$. We deduce that $\lim_{u,t\to\infty} ||p_{2u} - p_{2t}, s|| = 0$ Consequently, $\{p_{2u}\}$ is a Cauchy sequence in K and so is $\{p_u\}$ $\therefore p^*$ is the unique common fixed point of K and L This completes the proof.

REFERENCES:

- [1] Hassen Aydi, Monica-Felicia Bota, Erdal Karapınar, and Slobodanka Mitrovic. A fixed-point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory and Applications, 2012(1):1– 8, 2012.
- [2] IA0748 Bakhtin. The contraction mapping principle in quasimetric spaces. Func. An., Gos.Ped. Inst. Unianowsk, 30:26-37, 1989.
- V Berinde. Generalized contractions in quasimetric spaces. In Seminar on Fixed Point Theory, volume [3] 3, 1993.
- Ramakant Bhardwaj, Balaji R Wadkar, and Basant Singh. Fixed point theorems in generalized banach [4] space. International journal of Computer and Mathematical Sciences (IJCMS), ISSN, pages 2347–8527, 2015.
- M Boriceanu. Strict fixed point theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math, [5] 4(3):285-301, 2009.
- plied Analysis, volume 2011. Hindawi, 2011. [6]