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Abstract: - In order to conduct an offence, malevolent attacks like spamming, phishing, 

or hacking are considered into cyber crime. The computer systems are deftly hacked 

and compromised, causing significant financial loss that might huge impact. Email 

spamming is the most well-known type of cyber attack since it uses up more cyber 

resources, such as memory, computing power, network bandwidth, traffic abuse, etc. 

Spam emails are mass-produced, unsolicited commercial emails that are sent for a 

variety of reasons. Studies show that more than 85% of today's email is spam. 

Researchers have come up with a number of strategies to control email spam, but some 

of them have been comprehensive or successful. The methods for detecting email spam 

that are currently in use have some major drawbacks. First of all, it has not been 

possible to efficiently separate spam emails from legitimate ones. This has increased 

the amount of false positives and false negatives, which has reduced the accuracy of 

detection. Second, when the volume of emails received rises, it takes longer to identify 

spam emails. Thirdly, because the detection filters are installed on the server, the server 

is overworked while handling large operations. Therefore, effective reaction 

mechanisms and efficient collaborative detection techniques are found for early, 

widespread identification and mitigation of spam emails and their source at the receiver 

side. User Authorization Phase, Feature Extraction Phase, Classification Phase, and 

Similarity Detection Phase are the four steps of an unique Probabilistic EShield 

Protocol (PEP) that provides Email Spam Detection with extra features. By evaluating 

the email content utilizing extra functions, PEP filters the spam email as well as the 

illegal sender of the incoming email. The results of experiments conducted for PEP 

demonstrate that PEP outperforms CRVSM in terms of detection accuracy, false 

positive and false negative rate reduction, and detection rate attainment. Therefore, 

three unique protocols have been presented in this study for email spam detection, 

offering cyber security in the cyber- space: Collaborative Reputation-Based Vector 

Space Model (CRVSM), Probabilistic EShield Protocol (PEP), and Optimized Feature 

Selection Protocol (OFSP). 
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1. Introduction 

Today, the spam of the mail can detected From 2010 until the present, filters against email 

spam relied on individual users to handle their incoming emails with complex features since 

email spam is known to be pervasive, repeated, and inescapable. Big Data's introduction 

enables ISPs to keep track of user inbox activity to determine if an incoming email is spam or 

not. Thus, Big Data functionality offers efficient and effective filtering. 
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Future email spamming may be impossible to stop, thus comprehensive response 

measurement is required to continuously monitor incoming emails and to evaluate recipients' 

reaction over time. Similar to this, several approaches were put into place on the server, 

however this places a significant pressure on the server to do a high number of jobs in a short 

amount of time. It would be welcomed if anti-spam measures were implemented 

cooperatively at the recipient (Ashish Malviya et al. 2011,) so that the server could be 

relieved of its load and the detection could be completed quickly. 

 

2. OBJECTIVE OF THE WORK 

In order to detect and mitigate spam emails and their source as early as feasible at the 

receiver side using efficient algorithms, the work's goal is to build effective co-operative 

detection and mitigation methods. A thorough review of the literature on detecting email 

spam online allowed for the identification of issues and the formulation of goals. On the basis 

of accurately and plainly addressing these issues, the following objectives of the proposed 

work have been established: 

1. To more accurately and with fewer false positives and false negatives, effectively 

separate spam emails from non-spam emails in cyberspace. 

2. To shorten the time spent on spam detection by using cooperative detection. 

 

To carry out a cooperative detection at the receiver side, lessening the strain on the server. 

 

3. PROBLEM STATEMENT:  

First, they were unable to properly distinguish between spam emails and non- spam emails, 

which is one of the fundamental weaknesses of the currently available methodologies in the 

field of email spam detection. As a result, there are more false positives and negatives and the 

detection accuracy is decreased. Second, as the volume of incoming emails rises, so does the 

detection time. Thirdly, server-side deployment of filters prevents the server from completing 

large jobs quickly. 

The following difficulties with the spam detection techniques were able to be clearly and 

accurately defined thanks to the thorough literature review in the area of email spam 

detection in cyberspace: 

First off, it has not been done effectively to separate spam emails from other communications 

in cyberspace. As a result, detection accuracy is decreased and there are more false positives 

and false negatives. 

Second, the introduction of email sender authorisation was unsuccessful. As a result, there are 

now more people sending spam emails. 

Thirdly, the time it takes to identify spam emails and their senders gets longer. Therefore, the 

time delay can be decreased more if collaborative detection is possible with more 

characteristics. 

Fourth, because spam detection is handled on the server, the server is overworked. 

Implementing distributed spam detection at the receiver side with sophisticated response 

measurement for continuously evaluating incoming emails and for continua l feedback 

assessment of the receivers can solve this issue.  

 

The following contributions were made: 

 A Collaborative Reputation-Based Vector Space Model (CRVSM) has been designed 

and implemented. The performance of CRVSM has been analyzed using adequate 
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experiments. This protocol performs accurate and effective classification of incoming 

emails in three phases: Feature Extraction, Similarity Detection and Collaborative 

Reputation Evaluation. CRVSM focuses on reputation-based detection of spam emails 

mainly at the receiver side in cyber space. 

 A Probabilistic EShield Protocol (PEP) has been designed and implemented to 

perform email spam detection with additional features. The performance of PEP has 

been analyzed using adequate experiments. The PEP protocol performs Email Spam 

Detection in four phases: User Authorization, Feature Extraction, Classification and 

Similarity Detection. The two main tasks of PEP protocol are: First, it performs 

authorization of the received email to identify the unauthorized sender. Second, it 

analyzes the email contents to filter out the spam emails. This protocol is very 

effective, provides accurate detection and reduces the number of false positives and 

false negatives. 

An Optimized Feature Selection Protocol (OFSP) has been designed and implemented as a 

hybrid rule-based approach that combines two well-known feature selection methods for 

email spam filtering. The OFSP protocol functions in four steps: Feature Selection, 

Normalization, Score Assignment and Optimal Feature Selection. This protocol is applicable 

for large datasets and achieves reduction of features optimally and efficiently with reasonable 

complexity. The performance of  OFSP has been analyzed using adequate experiments. This 

protocol provides an optimal solution for email spam detection and outperforms CRVSM and 

PEP protocols.  

 

4. EXPERIMENTAL RESULT OF CRVSM PROTOCOL 

Java programming model has been used for the implementation and evaluation of the 

proposed CRVSM protocol. Experiments were conducted on a dataset that contains 1.4 

million emails. The performance of CRVSM protocol has been analyzed with 5000, 10000, 

15000, 20000 and 25000 emails with a spam ratio of 0.5%. The CRVSM protocol has been 

executed on a general processor computer (Intel(R) i5 processor) with 2.67 GHz and 8 GB 

RAM. The following metrics were used to evaluate the performance of CRVSM: The 

performance metrics of CRVSM protocol have been evaluated by varying percentage of 

collaborative reporters, the number of senders and the number of incoming emails from each 

sender. The percentage of collaborative reporters has been varied from 20% to 80% of total 

number of receivers of relevant email. The reporters work together in a collaborative fashion. 

The number of senders has been varied from 100 to 500 and the number of incoming email 

has been varied from 5000 to 25000. The CRVSM model is dynamic and is more effective 

over time. 

 

5. EXPERIMENTAL      RESULTS      AND      DISCUSSIONS 

Experiment 1: 

The experiment is conducted to study the FPR for 100 to 500 senders by varying the number 

of emails being sent as, 5000, 10000, 15000, 20000 and 25000 emails. Figure  1 shows the 

FPR for different number of email senders with varying number of emails.  

 

 

 

 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
 

Research paper                                     © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11, Iss 3,March 2022 

 

663 | P a g e  

 

 

 

Figure 1 FPR for CRVSM Vs Number of Email Senders 

Experiment 2: 

The experiment is conducted to compare the FPR of CRVSM protocol with other four 

protocols viz. MLP, FEDM, PM and VSM for varying percentage of collaborative reporters. 

The experiment is conducted for 500 senders and 25000 emails. Figure 2 shows the 

comparison of FPR for CRVSM with four existing protocols for different percentage of 

collaborative reporters. 

 

Figure 2 Comparison of FPR for CRVSM 
It has been observed that as the number of collaborative reporters increases, the FPR of 

CRVSM decreases and provides better results than existing protocols. The results show that 

with 500 senders and 25000 emails being sent and for 20% of collaborative reporters, 

CRVSM generates a FPR of 0.20 and as the percentage of collaborative reporters increases 

(i.e., 80%), the FPR of CRVSM decreases to 0.06 and provides better results than existing 

protocols. CRVSM outperforms the other four protocols by generating less FPR. 

 

Experiment 3 
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The experiment is conducted to study the FNR for 100 to 500 senders by varying the number 

of emails being sent as, 5000, 10000, 15000, 20000 and 25000 emails.  

Figure 3 shows the FNR for different number of email senders with varying number of 

emails. 

 

Figure 3 FNR for CRVSM Vs Number of Email Senders 

 
It has been observed that with less number of senders, only less number of emails reach the 

receiver and hence the false negatives decreases and it increases as the number of senders 

increases with increasing number of emails. The increase in the number of false negatives 

increases the FPR value and vice versa. 

 

Experiment 4 

The experiment is conducted to compare the FNR of CRVSM protocol with other four 

protocols viz. MLP, FEDM, PM and VSM for varying percentage of collaborative reporters. 

The experiment is conducted for 500 senders and 25000 emails. Figure 4 shows the 

comparison of FNR for the five protocols for different percentage of collaborative reporters.    

 

Figure 4 Comparison of FNR for CRVSM 
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It has been observed that as the number of collaborative reporters increases, the FNR of 

CRVSM decreases and provides better results than existing protocols. The results show that 

with 500 senders and 25000 emails being sent and for 20% of collaborative reporters, 

CRVSM generates a FNR of 0.10 and as the percentage of collaborative reporters increases 

(i.e., 80%), the FNR of CRVSM decreases to 0.03 and provides better results than existing 

protocols. CRVSM outperforms the other four protocols by generating less FNR.  

 

Experiment 5 

The experiment is conducted to compare the overall throughput of CRVSM with other four 

protocols viz. MLP, FEDM, PM and VSM by varying the number of emails with a bandwidth 

value of 3 Mbps for 500 senders with 80% of collaborative reporters. Figure 5 shows the 

overall throughput for the five protocols for varying number of emails with a bandwidth 

value of 3 Mbps. It has been observed that CRVSM outperforms the other four protocols by 

efficiently utilizing the network bandwidth values and thus achieves good overall throughput. 

 

Figure 5 Comparison of Overall Throughput for CRVSM 

 

 

6. COMPLEXITY ANALYSIS OF CRVSM 

The time complexity has been analyzed mathematically for CRVSM model. The CRVSM 

model performs feature extraction in  time step followed by similarity detection in time 

step and collaborative reputation evaluation in time step for all the email being received at the 

receiver. Therefore, the total time complexity of CRVSM has been formulated in (4.7) as, 

 

  (4.7) 

 

VSM requires     time step for cluster generation and  time step for reduced 

dataset generation. Therefore, the total time complexity of VSM has been 

formulated as, . 

 
FEDM requires     time step for construction of feature set,  time step for 

reduced feature set generation and     time step for classification using 

Cluster-based Classification. Therefore, the total time complexity of FEDM has 

been formulated as, . 
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PM requires    time step for generation of decision trees for classification 

purposes and time step for filtering spam email at each stage (i.e., four pipeline 

stages) of pipeline. Therefore, the total time complexity of PM has been formulated 

as, . 

 

MLP requires time step for clustering the email into different layers and  time 

step for activation of neurons at a layer. Therefore, the total time complexity of 

MLP has been formulated as, 

 

The presented and evaluated the experimental results and performance results of the novel 

CRVSM protocol. The experimental results show that the novel CRVSM protocol 

outperforms the other protocols like MLP, FEDM, VSM and PM. The CRVSM protocol 

achieves accurate detection of spam emails by reducing the false positive rate, false negative 

rate and thereby increasing the detection accuracy to a greater degree. The CRVSM protocol 

achieves timely detection by reducing the spam detection time. Moreover, the CRVSM 

protocol proves its efficiency by achieving good spam detection rate. The CRVSM protocol 

provides guaranteed system performance by achieving good network service ratio and overall 

throughput. 

 

7. CONCLUSION AND FUTURE SCOPE 

Email Spamming is the most recognized form of cyber attack that causes heavy financial loss 

in trillions in the cyber-space. Email spammers compromise the computer systems and 

exploit their resources by transmitting spam emails massively. Researchers are proposing 

several approaches against email spamming but they cannot provide a complete and effective 

solution.  

In this paper, the recently proposed research approaches against email spamming, their 

descriptions, advantages and disadvantages have been surveyed and clearly presented. The 

survey on these research approaches in detecting spam emails enabled to clearly define the 

problems that exist in the cyber space on Email Spam Detection. The gaps such as, 

inefficiency in isolating spam emails from non-spam ones, increased detection delay, higher 

false alarms and overhead in complexity that have made the system less efficient have been 

identified through this survey. These gaps can be bridged through efficient email spam 

detection protocols. 

Three novel email spam detection protocols viz. Collaborative Reputation- Based Vector 

Space Model (CRVSM), Probabilistic EShield Protocol (PEP) and Optimized Feature 

Selection Protocol (OFSP) have been proposed to bridge these gaps analyzed in the existing 

approaches. The proposed protocols increase the system performance and improve the system 

efficiency. 
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