d^{d}-DISTANCE IN SOME CORONA RELATED GRAPHS

T.JACKULINE , Assistant Professor, Department of Mathematics, Scad College Of Engineering and Technology.

DR.J.GOLDEN EBENEZER JEBAMANI, Head \& Assistant Professor, Department of Mathematics, Sarah Tucker College, ManonmaniamSundaranar University, Tamilnadu, India.
DR. D. PREMALATHA, Head \& Assosiate Professor, PG \& Research Department of Mathematics, Rani Anna GovernmentCollege for Women, Manonmaniam Sundaranar University, Tamilnadu, India.

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. Let u, v be two vertices of a connected graph G. Then the d-length of a $u-v$ path defined $\operatorname{as} d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+$ $\operatorname{deg}(u) \operatorname{deg}(v)$, where $d(u, v)$ is the shortest distance between the vertices u and v. In this paper d^{d} - distance of some corona relaed graphs are determined.

Keywords: d^{d}-distance, complete graph, cycle graph and corona graph.

1. INTRODUCTION

Let $G(V, E)$ be a simple, connected graph where $V(G)$ is its vertex set and $E(G)$ is its edge set. The degree of any vertex v in G is the number of edges incident with v and is denoted by deg v . The minimum degree of a graph is denoted by $\delta(\mathrm{G})$ and the maximum degree of a graph G is denoted by $\Delta(G)$. A vertex of degree 0 is called an isolated vertex and a vertex of degree 1 is called a pendent vertex. The standard or usual distance $d(u, v)$ between u and v is the length of the shortest $u-v$ path in G. In this paper, d^{d} - distance of some corona relaed graphs are determined.

Definition 1.1: The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} where G_{1} has m vertices and n edges is defined as the graph G_{1} obtained by taking one copy of G_{1} and m copies of G_{2}, and then joining by an edge the $\mathrm{i}^{\text {th }}$ vertex of G_{1} to every vertex in the $\mathrm{i}^{\text {th }}$ copy of G_{2}.

2.Main Results:

Theorem 2.1: If $G=C_{m} \odot K_{n}$ then $d^{d}\left(u=v_{i}, v=v_{i+1}\right)=(n+3)^{2}$, where $v_{i} \in C_{m}$.
Proof: Let $\mathrm{V}\left(\mathrm{C}_{\mathrm{m}}\right)=\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}, \mathrm{V}\left(\mathrm{K}_{\mathrm{i}}\right)=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i} 2}, \ldots, \mathrm{u}_{\mathrm{in}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$ and $\mathrm{V}(\mathrm{H})=$ $\mathrm{V}\left(\mathrm{C}_{\mathrm{m}}\right) \cup \mathrm{V}\left(\mathrm{K}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{m}$ and also $\mathrm{E}(\mathrm{H})=\mathrm{E}\left(\mathrm{C}_{\mathrm{m}}\right) \cup \mathrm{E}\left(\mathrm{K}_{\mathrm{i}}\right) \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. We have $d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\operatorname{deg}(u) \operatorname{deg}(v)$. Since deg $u_{i n}=n, 1 \leq i \leq m . N\left(v_{i}\right)$ and $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}+1}\right)$ are $\mathrm{u}_{\mathrm{im}} 1 \leq \mathrm{i} \leq \mathrm{m}$ and adjacent vertices of $\mathrm{v}_{\mathrm{i}} . \mathrm{v}_{\mathrm{i}}$ is adjaent with two vertices and $\mathrm{v}_{\mathrm{i}+1}$ also adjacent with two vertices because $\mathrm{v}_{\mathrm{i}} \in \mathrm{C}_{\mathrm{m}}$. Hence $\operatorname{deg}\left(\mathrm{u}=\mathrm{v}_{\mathrm{i}}\right)=\operatorname{deg}\left(\mathrm{v}=\mathrm{v}_{\mathrm{i}+1}\right)=n+$ 2. Now, $\operatorname{deg}(u)+\operatorname{deg}(v)=\mathrm{n}+2+\mathrm{n}+2=2 \mathrm{n}+4$ and $\operatorname{deg}(u) \operatorname{deg}(v)=(\mathrm{n}+2)(\mathrm{n}+2)=(\mathrm{n}+$ $2)^{2}$. Since u and v are adjacent vertices $d(u, v)=1$. Therefore $d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)$ $+\operatorname{deg}(u) \operatorname{deg}(v) \quad=1+2 n+4+(n+2)^{2}$

$$
=5+2 n+n^{2}+4+4 n \quad=n^{2}+6 n+9
$$

$$
=(\mathrm{n}+3)^{2}
$$

Theorem 2.2: If $G=K_{m} \odot K_{n}, m, n \geq 2$ then $d^{d}(u, v)=n^{2}+m^{2}+2 n m$, where $u, v \in K_{m}$.
Proof: Let $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)=\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}, \mathrm{V}\left(\mathrm{K}_{\mathrm{i}}\right)=\left\{\mathrm{u}_{\mathrm{i} 1}, \mathrm{u}_{\mathrm{i} 2}, \ldots, \mathrm{u}_{\mathrm{in}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$ and $\mathrm{V}(\mathrm{H})=$
$\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right) \cup \mathrm{V}\left(\mathrm{K}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{m}$ and also $\mathrm{E}(\mathrm{H})=\mathrm{E}\left(\mathrm{K}_{\mathrm{m}}\right) \cup \mathrm{E}\left(\mathrm{K}_{\mathrm{i}}\right) \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. We have $d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\operatorname{deg}(u) \operatorname{deg}(v)$. Since u and $v \in K_{m}, d(u, v)=1$. Since $\operatorname{deg} \mathrm{u}_{\mathrm{in}}=\mathrm{n}, 1 \leq \mathrm{i} \leq \mathrm{m}$. Since u and v be any vertex of $\mathrm{K}_{\mathrm{m}}, \mathrm{N}(\mathrm{v})=\mathrm{N}(\mathrm{u})=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{in}}, \mathrm{u}_{\mathrm{mn}}: 1 \leq \mathrm{i}\right.$ $\leq \mathrm{m}-1\}$. Hence deg u and $\operatorname{deg} v$ is equal to $\mathrm{n}+\mathrm{m}-1$. Now, $\operatorname{deg}(u)+\operatorname{deg}(v)=\mathrm{n}+\mathrm{m}-1$ $+n+m-1=2 m+2 n-2$ and
$\operatorname{deg}(u) \operatorname{deg}(v)=(\mathrm{n}+\mathrm{m}-1)(\mathrm{n}+\mathrm{m}-1)$. Therefore $d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+$ $\operatorname{deg}(u) \operatorname{deg}(v)$
$=1+2 m+2 n-2+(n+m-1)(n+m-1)=2 n+2 m-1+n^{2}+n m-n+n m+m^{2}-m-n$ $-\mathrm{m}+1=2 \mathrm{n}+2 \mathrm{~m}+\mathrm{n}^{2}+2 \mathrm{~nm}-2 \mathrm{n}+\mathrm{m}^{2}-2 \mathrm{~m}+1=\mathrm{n}^{2}+\mathrm{m}^{2}+2 \mathrm{~nm}$.

Theorem 2.3: If $G=K_{1, m} \odot K_{n}, m, n \geq 2$ then $d^{d}(u, v)=n^{2}+4 n+5$ where u, $v \in K_{1, m}-$ X.

Proof: Let $\mathrm{V}\left(\mathrm{K}_{1, \mathrm{~m}}\right)=\left\{\mathrm{x}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}, \mathrm{V}\left(\mathrm{K}_{\mathrm{i}}\right)=\left\{\mathrm{u}_{\mathrm{i} 1}, \mathrm{u}_{\mathrm{i} 2}, \ldots, \mathrm{u}_{\mathrm{in}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$ and $\mathrm{V}(\mathrm{H})=$ $\mathrm{V}\left(\mathrm{K}_{1, \mathrm{~m}}\right) \cup \mathrm{V}\left(\mathrm{K}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{m}$ and also $\mathrm{E}(\mathrm{H})=\left(\mathrm{K}_{1, \mathrm{~m}}\right) \cup \mathrm{E}\left(\mathrm{K}_{\mathrm{i}}\right) \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. We have $d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\operatorname{deg}(u) \operatorname{deg}(v) . u$ and v be any vertex of $K_{1, m}-x, d(u$, $v)=2$. Since deg $u_{i n}=n, 1 \leq i \leq m . N(v)=N(u)=\left\{x, u_{i n}: 1 \leq i \leq m\right\}$. Hence deg u and $\operatorname{deg} v$ is equal to $n+1$.

Now, $\operatorname{deg}(u)+\operatorname{deg}(v)=\mathrm{n}+1+\mathrm{n}+1=2 \mathrm{n}+2$ and $\operatorname{deg}(u) \operatorname{deg}(v)=(\mathrm{n}+1)^{2}$. Therefore $d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\operatorname{deg}(u) \operatorname{deg}(v)=2+2 \mathrm{n}+2+(\mathrm{n}+1)^{2}=4+2 \mathrm{n}+\mathrm{n}^{2}+1+2 \mathrm{n}$ $=n^{2}+4 n+5$.

Theorem 2.4: If $G=K_{1, m} \odot K_{n}, m, n \geq 2$ then $d^{d}(u, v)=(n+2)(n+m+1)$ where $u=x, v$ $\in \mathrm{K}_{1, \mathrm{~m}}-\mathrm{X}$.

Proof: Let $\mathrm{V}\left(\mathrm{K}_{1, \mathrm{~m}}\right)=\left\{\mathrm{x}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}, \mathrm{V}\left(\mathrm{K}_{\mathrm{i}}\right)=\left\{\mathrm{u}_{\mathrm{i} 1}, \mathrm{u}_{\mathrm{i} 2}, \ldots, \mathrm{u}_{\mathrm{in}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$ and $\mathrm{V}(\mathrm{H})=$ $\mathrm{V}\left(\mathrm{K}_{1, \mathrm{~m}}\right) \cup \mathrm{V}\left(\mathrm{K}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{m}$ and also $\mathrm{E}(\mathrm{H})=\mathrm{E}\left(\mathrm{K}_{1, \mathrm{~m}}\right) \cup \mathrm{E}\left(\mathrm{K}_{\mathrm{i}}\right) \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. We have $d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\operatorname{deg}(u) \operatorname{deg}(v) . u=x$ and v be any vertex of $K_{1, \mathrm{~m}}-\mathrm{x}$, $d(u, v)=1$. Since $\operatorname{deg} u_{i n}=n, 1 \leq i \leq m . N(u)=\left\{v_{i}, u_{i n}: 1 \leq i \leq m\right\} N(v)=\left\{x, u_{i n}: 1 \leq i \leq\right.$ $\mathrm{m}\}$. Hence $\operatorname{deg} \mathrm{u}=\mathrm{n}+\mathrm{m}$ and $\operatorname{deg} \mathrm{v}=\mathrm{n}+1$. Now, $\operatorname{deg}(u)+\operatorname{deg}(v)=(\mathrm{n}+\mathrm{m})+(\mathrm{n}+1)$ and $\operatorname{deg}(u) \operatorname{deg}(v)=(\mathrm{n}+\mathrm{m})(\mathrm{n}+1)$. Therefore

$$
\begin{aligned}
& d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\operatorname{deg}(u) \operatorname{deg}(v) \\
& =1+(\mathrm{n}+\mathrm{m})+(\mathrm{n}+1)+(\mathrm{n}+\mathrm{m})(\mathrm{n}+1) \\
& =1+(\mathrm{n}+m)+(\mathrm{n}+m)(\mathrm{n}+1)+(\mathrm{n}+1)
\end{aligned}
$$

$$
\begin{aligned}
& =1+(n+m)[1+(n+1)] \\
& +n+1 \\
& =(n+m)(n+2)+(n+2) \\
& \quad=(n+2)(n+m+1)
\end{aligned}
$$

Theorem 2.5: If $G=K_{m} \odot K_{1, n}, m, n \geq 2$ then $d^{d}(u, v)=(n+m+1)^{2}$, where u, $v \in K_{m}$.
Proof: : Let $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}\right\}, \mathrm{V}(\mathrm{H})=\mathrm{V}\left(\mathrm{K}_{\mathrm{m}}\right) \cup\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{H})=\mathrm{E}\left(\mathrm{K}_{\mathrm{m}}\right) \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{ij}}, \mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{ij}}: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. We have $d^{d}(u, v)=d(u, v)+$ $\operatorname{deg}(u)+\operatorname{deg}(v)+\operatorname{deg}(u) \operatorname{deg}(v) . u$ and v be any vertex of $K_{m}, d(u, v)=1 . . N(u)=N(v)=\left\{v_{k}\right.$, $\left.\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{ij}}: 1 \leq \mathrm{k} \leq \mathrm{m}-1,1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. Hence $\quad \operatorname{deg} \mathrm{u}=\operatorname{deg} \mathrm{v}=\mathrm{m}-1+\mathrm{n}+$ $1=\mathrm{n}+\mathrm{m}$. Now, $\operatorname{deg}(u)+\operatorname{deg}(v)=(\mathrm{n}+\mathrm{m})+(\mathrm{n}+\mathrm{m})$
$=2 \mathrm{n}+2 \mathrm{~m}$ and
$\operatorname{deg}(u) \operatorname{deg}(v)=(\mathrm{n}+\mathrm{m})^{2}$. Therefore $d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\operatorname{deg}(u) \operatorname{deg}(v)=1+(2 \mathrm{n}$ $+2 \mathrm{~m})+(\mathrm{n}+\mathrm{m})^{2}$
$=1+2 \mathrm{n}+2 \mathrm{~m}+\mathrm{n}^{2}+\mathrm{m}^{2}+2 \mathrm{~nm}=\mathrm{n}^{2}+\mathrm{m}^{2}+2 \mathrm{~nm}+2 \mathrm{n}+2 \mathrm{~m}+1=(\mathrm{n}+\mathrm{m}+1)^{2}$.

Conclusion:

Many researchers are concentrating various distance concepts in graphs. We introduced $\mathrm{d}^{\mathrm{d}}-$ disance in graps. In this paper we disccuss about d^{d}-distance of some corona related graphs.

REFERENCES

[1] F. Buckley and F. Harary, Distance in graphs, Addison- Wesley, Longman, 1990.
[2] G. Chartrand and P. Zang, Introduction to Graph Theory, Tata McGraw-Hill, (2006).
[3] K.M. Kathiresan and G.Marimuthu, Superior distance in graphs, J. Combin. Comput., 61(2007)73-80.
[4] K. M. Kathiresan and R. Sumathi, A study on signal distance in graphs, Algebra, graph theory and their applications, Narosa publishing house Pvt. Ltd(2010) 50-54.
[5] D. Reddy Babu and L. N. Varma, P., D-Distance in graphs, Golden Research Thoughts, 9(2013) 2231-5063.
[6] Haynes T. W, Hedetniemi S.T, Slater P. J, 1998, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York.

