ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

Stepwise Regression Analysis on Paddy Production in Manipur

S. Loidang Devi

Department of Statistics, D.M.College of Science, Dhanamanjuri University Email:drsoibamloidangdevi@gmail.com

Abstract

Manipur is in north eastern part of India and internationally boundering state with Myanmar. Rice is staple food. The economy coming from rice crop production generates income of the people for their livelihood mainly and has a major contribution to NSDP. Hence, the contributing factors, for enhancing in the rice production, have to be identified so as to gear up the sustainable development in the state. The aim is to identify the factors of rice crop with reference to various agro-climatic, socio-economic, and topographical conditions of Manipur. Under a stratified two- stage sampling design, cross-sectional primary data is collected and stepwise regression analysis was followed by proposing a statistical model. The model fits the data well and diagnostic checks confirmed that the data do not contradict the general underlying assumptions about the model. By the value of R=0.907(before) and R=0.925(after) application of stepwise regression process respectively indicates that 90.7 percent (before) and 92.5 percent (after) of variation in the yield is explained by the independent variable under consideration.

Key words: step-wise regression, Manipur, cross sectional data, statistical model

1. Introduction

The yield figure of crops may be considered as the combined and collective contribution of the factors that influenced the crop production. The collective influence of these production factors cannot be systematically arranged and properly managed. As such when one factor decrease while some other factors remain constant. Therefore, the behavioural nature of these factors influencing the crop yields is not predictable in general. Few workers who have carried out the work taking some general factors influencing the crop productivity are worth mention (Parikh and Mosley, 1986; Mohapatra et al,1996; Rajinder Kaur and Sekarwar 1997; and Loidang et al, 2004).

Manipur, having different topographic, socio-economic and agro-climatic conditions which is in snail's faceas far as the agricultural development is concerned. The problem to be considered, particularly the agriculture, is supposed to be handled and dealt with in the light of the prevailing conditions and factors of the state. Due to lack of manpower and scientific and technological facilities, systematic and periodical reliable data cannot be found. Consequently, many relevant data cannot be properly utilized and identified in this region. For instance, scientific irrigation facility is almost nil in Manipur.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

And hence, these existing models cannot appropriately be applied and used in the above context. Accordingly, the existing models had to be modified, to suit the prevailing conditions of this region as well as to enable us to carry out formal mathematical analysis using relevant and sophisticated data. In view of these consideration, a reasonably justifiable and workable mathematical model that fulfills the essentialities, have been developed.

2. Model

The statistical model proposed for the production of rice in the Union State of Manipur is

$$Y_{i} = C \prod_{j=1}^{P} X_{ij}^{bij} e^{ei}; i = 1, 2,, n;$$
(A)

 $j = 1, 2, \dots, p$

which, by taking logarithm, may equivalently be given as

$$\log_{e} Y_{i} = b_{io} + \sum_{j=i}^{p} b_{ij} \log_{e} X_{ij} + e^{ei}, \qquad (B)$$
$$i = 1, 2, \dots, n$$
$$j = 1, 2, \dots, p$$

where, $Y_i = Yield$ of the i^{th} farm,

 $X_{i1} = Age of the ith farmers,$

 X_{i2} = Year of schooling of the ith farmer,

 X_{i3} = Size of the family for the ith farmer,

 $X_{i4} = Area$ under tenant operated by the i^{th} farmer in hectare,

 X_{i5} = Area under owner operated by the i^{th} farmer in hectare,

 X_{i6} = Area under double cropping of the $i^{\rm th}$ farmer.

 X_{i7} = Irrigated area of the ith farmer (if any), in hectare,

 X_{i8} = Quantity of fertilizers consumed by the ith farmer, in kilograms,

 X_{i9} = Area under modern High-Yielding Variety in the ith farm, in hectare,

 $X_{i10} = 1$, if the soil of the ith farmer has been tested.

= 0, otherwise

 X_{i11} = Quantity of farmyard manure applied to the ith farm (per load of bullockcart).

 X_{i12} = Distance of market centre from the ith farmer's residence (house),

 X_{i13} = Amount of credit, if any,

 X_{i14} = Cost of cultivation without fertilizer cost for the ith farmer,

 X_{i15} = Monthly family income of the ith farmer,

 X_{i16} = Price of fertilizers used by the ith farmer.

 b_{i0} = constants, b_{ij} = regression co-efficients,

 ϵ_i = error components which are assumed to be independently and identically distributed N(0,1).

3. Method of Analysis

(a). The Sampling Frame:

To fit the model, we collect the cross-sectional data by preparing a pre-designated questionnaire method is used. The sampling design of this crop survey is a stratified two stage sampling scheme of equal size suggested by Cochran (1977). With the blocks of the

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

Imphal-west district as strata, villages in the blocks as the primary sampling unit and farmers of experimental site of the selected villages as the ultimate second stage sampling unit. The data used in this study were from the survey of 795 farms in 43 villages.

(b). Techniques applied:

The model is fitted by the ordinary least squares method. And for testing the hypotheses, student's t and Snedecor's F statistics were found useful in the regression analysis and analysis of variance that followed. For detecting and removing the superfluous observations in the data, we apply the filtration procedure which runs as follows. If $-3 \le$ studentized residual \le +3, the observation is counted in the analysis, if not, remove it.

For diagnostic checking, histograms, normal probability plot curves, scatter plots, etc., techniques and many other criteria, viz., tolerance limits, and VIF (Variance Inflation Factor), are also computed and examined for the models so that as formal claim as a good fit may be made for the model.

4. Analysis and Results

The production model performed has been

$$\log_e Y_i = b_{i0} + \sum_{j=1}^{16} b_{ij} \log X_{ij}; \quad i = 1, 2, \dots, 795;$$
(C)
$$i = 1, 2, \dots, 16.$$

where symbols have their usual meaning defined in the model equation (B)

TABLE – 1 Multiple Correlation co-efficient (R), F-statistic and Durbin-Watson (d) statistic

R	R Square	Adjusted R Square	F Change	df1	df2	Durbin-Watson
.907	.823	.819	225.564*	16	776	1.686

* indicates significances.

TABLE – 2 ANOVA

	Sum of Squares	df	Mean Square	F
Regression	137.650	16	8.603	225.564*
Residual	29.597	776	3.814E-02	
Total	167.247	792		

* indicates significance

Since the calculated F-value namely 225.564 is highly significant, we reject the null hypothesis that the b_{ij} 's are zero at the 0.01 probability level of significance even. Hence, each Y_i can be predicted by the X_{ij} 's accurately.

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

TABLE-3

	Unstandardized Coefficients	t	Collinearity Statistics		
	В		Tolerance	VIF	
(Constant)	-1.796	-11.368			
X _{i1}	2.657E-02	.875	.810	1.235	
X _{i2}	8.958E-04	.118	.775	1.291	
X _{i3}	4.043E-02	1.681	.886	1.129	
X_{i4}	.280	13.081*	.310	3.221	
X _{i5}	.290	13.893*	.282	3.551	
X _{i6}	.106	2.736*	.848	1.179	
X _{i7}	3.674E-03	.325	.853	1.172	
X _{i8}	9.033E-02	3.139*	.091	10.987	
X _{i9}	.152	7.798*	.471	2.122	
X _{i10}	.155	2.158*	.979	1.021	
X _{i11}	3.631E-02	4.414*	.905	1.105	
X _{i12}	1.241E-02	1.208	.881	1.135	
X _{i13}	4.333E-03	.621	.989	1.011	
X _{i14}	8.849E-02	7.395*	.517	1.935	
X _{i15}	6.862E-02	8.396*	.762	1.312	
X _{i16}	6.224E-02	2.415*	01.3	9.699	

Coefficients, t-statistic, Collinearity Statistics

* indicates significances.

It is thus found that majority of the regression co-efficients, namely those of X_{i4} , X_{i5} , X_{i6} , X_{i8} , X_{i9} , X_{i10} , X_{i11} , X_{i14} , X_{i15} , X_{i16} are significant while the remaining are found insignificant. So, it confirms that the linearity condition between Y_i and X_{ij} 's and $\forall j$, as embodied by the model may reasonably be assumed.

Next, applying the techniques of variable selection and filtration, we get the following results and discussions.

TABLE -4

Multiple Correlation co-efficient (R), F-statistic and Durbin-Watson (d) statistic

	R	R Square	Adjusted R Square	Std. Error of the Estimate
Model				
1	.790	.625	.624	.2769
2	.847	.717	.716	.2407
3	.865	.749	.748	.2269
4	.881	.777	.776	.2139
5	.887	.787	.786	.2089

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

6	.920	.847	.846	.1773
7	.922	.850	.849	.1758
8	.924	.853	.852	.1740
9	.925	.855	.853	.1731
10	.925	.856	.854	.1724

Contd./-...

Change Statistics					Durbin-Watson
R Square	F Change	df1	df2	Sig. F Change	
Change					
.625	1304.620	1	784	.000	
.092	254.253	1	783	.000	
.032	99.402	1	782	.000	
.028	98.955	1	781	.000	
.011	38.819	1	780	.000	
.060	303.949	1	779	.000	
.003	14.291	1	778	.000	
.003	17.308	1	777	.000	
.002	8.643	1	776	.003	
.001	7.473	1	775	.006	1.713

a Predictors: (Constant), X_{i8}

b Predictors: (Constant), X_{i8}, X_{i9}

c Predictors: (Constant), X_{i8}, X_{i9}, X_{i15}

d Predictors: (Constant), X_{i8} , X_{i9} , X_{i15} , X_{i14}

e Predictors: (Constant), X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5}

f Predictors: (Constant), X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5} , X_{i4}

g Predictors: (Constant) X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5} , X_{i4} , X_{i11}

h Predictors: (Constant), Xi8, Xi9, Xi15, Xi14, Xi5, Xi4, Xi11, Xi6

i Predictors: (Constant), X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5} , X_{i4} , X_{i11} , X_{i6} , X_{i16}

j Predictors: (Constant), X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5} , X_{i4} , X_{i11} , X_{i6} , X_{i16} , X_{i10}

k Dependent Variable: YI

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

TABLE-5

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	100.010	1	100.010	1304.620	.000
	Residual	60.100	784	7.666E-02		
	Total	160.110	785			
2	Regression	114.742	2	57.371	990.150	.000
	Residual	45.368	783	5.794E-02		
	Total	160.110	783			
3	Regression	119.858	3	39.953	776.191	.000
	Residual	40.252	782	5.147E-02		
	Total	160.110	785			
4	Regression	124.385	4	31.096	679.803	.000
	Residual	35.725	781	4.574E-02		
	Total	160.110	785			
5	Regression	126.078	5	25.216	577.941	.000
	Residual	34.032	780	4.363E-02		
	Total	160.110	785			
6	Regression	135.630	6	22.605	719.334	.000
	Residual	24.480	779	3.142E-02		
	Total	160.110	785			
7	Regression	136.072	7	19.439	629.133	.000
	Residual	24.038	778	3.090E-02		
	Total	160.110	785			
8	Regression	136.595	8	17.074	564.194	.000
	Residual	23.515	777	3.026E-02		
	Total	160.110	785			
9	Regression	136.854	9	15.206	507.399	.000
	Residual	23.256	776	2.997E-02		
	Total	160.110	785			
10	Regression	137.077	10	13.708	461.215	.000
	Residual	23.034	775	2.972E-02		

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

Total 160.110 785

a Predictors: (Constant), X_{i8}

b Predictors: (Constant), Xi8, Xi9

c Predictors: (Constant), X_{i8}, X_{i9}, X_{i15}

d Predictors: (Constant), Xi8, Xi9, Xi15, Xi14

e Predictors: (Constant), Xi8, Xi9, Xi15, Xi14, Xi5

f Predictors: (Constant), Xi8, Xi9, Xi15, Xi14, Xi5, Xi4

g Predictors: (Constant) X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5} , X_{i4} , X_{i11}

h Predictors: (Constant), X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5} , X_{i4} , X_{i11} , X_{i6}

i Predictors: (Constant), X_{i8}, X_{i9}, X_{i15}, X_{i14}, X_{i5}, X_{i4}, X_{i11}, X_{i6}, X_{i16}

j Predictors: (Constant), Xi8, Xi9, Xi15, Xi14, Xi5, Xi4, Xi11, Xi6, Xi16, Xi10

k Dependent Variable: Y_I

Since the value of the multiple correlation coefficient (R) between dependent variable (on one side) and the set of independent variables $(X_{ij}s)$ (on the other side) is converged and residual sum of squares decrease, the model obtained at the 9th step will be recommended for selection accordingly.

Since the calculated F value, namely 507.399 when compared with the corresponding table value of F for 9 and 776 degree of freedom at 5 per cent level, is significant, we reject the null hypothesis. Hence, Y_i can be predicted accurately by using the X_{ij} 's.

TABLE - 6

Coefficients

		Unstandardized Coefficients		t	Sig.	Collinearity Statistics	
Model		В	Std. Error			Tolerance	VIF
1	(Constant)	-1.075	.062	-17.250	.000		
	X _{i8}	.448	.012	36.120	.000	1.000	1.000
2	(Constant)	730	.058	-12.512	.000		
	X _{i8}	.313	.014	22.850	.000	.619	1.615
	X _{i9}	.338	.021	15.945	.000	.619	1.615
3	(Constant)	-1.317	.081	-16.346	.000		
	X _{i8}	.282	.013	21.271	.000	.586	1.707

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

	X _{i9}	.317	.020	15.797	.000	.613	1.633
	X _{i15}	8.957E-02	.009	9.970	.000	.863	1.159
4	(Constant)	-2.075	.108	-19.287	.000		
	X _{i8}	.225	.014	16.309	.000	.483	2.071
	X _{i9}	.264	.020	13.459	.000	.568	1.760
	X _{i15}	8.700E-02	.008	10.269	.000	.862	1.160
	X _{i14}	.126	.013	9.948	.000	.562	1.781

5	(Constant)	-1.929	.108	-17.914	.000		
	X _{i8}	.221	.013	16.380	.000	.482	2.076
	X _{i9}	.240	.020	12.283	.000	.546	1.831
	X _{i15}	7.856E-02	.008	9.370	.000	.840	1.191
	X _{i14}	.116	.012	9.278	.000	.552	1.812
	X _{i5}	8.735E-02	.014	6.230	.000	.780	1.282
6	(Constant)	-1.273	.099	-12.880	.000		
	X _{i8}	.129	.013	10.235	.000	.397	2.517
	X _{i9}	.130	.018	7.348	.000	.477	2.095
	X _{i15}	5.704E-02	.007	7.898	.000	.815	1.227
	X _{i14}	8.263E-02	.011	7.693	.000	.535	1.870
	X _{i5}	.403	.022	18.603	.000	.235	4.258
	X _{i4}	.373	.021	17.434	.000	.273	3.666
7	(Constant)	-1.286	.098	-13.118	.000		
	X _{i8}	.128	.012	10.262	.000	.397	2.518
	Xi9	.122	.018	6.893	.000	.470	2.127
	X _{i15}	5.799E-02	.007	8.093	.000	.814	1.228
	X _{i14}	8.346E-02	.011	7.834	.000	.535	1.871
	X _{i5}	.399	.022	18.545	.000	.234	4.269
	X _{i4}	.373	.021	17.592	.000	.273	3.666
	Xi11	2.742E-02	.007	3.780	.000	.949	1.053
8	(Constant)	-1.240	.098	-12.690	.000		
	X _{i8}	.125	.012	10.133	.000	.396	2.525
	X _{i9}	.113	.018	6.382	.000	.463	2.161
	X _{i15}	5.920E-02	.007	8.340	.000	.813	1.230

	X _{i14}	7.673E-02	.011	7.193	.000	.522	1.915
	X _{i5}	.413	.022	19.153	.000	.229	4.370
	X _{i4}	.392	.021	18.251	.000	.261	3.828
	X _{i11}	3.125E-02	.007	4.318	.000	.934	1.071
	X _{i6}	.139	.033	4.160	.000	.916	1.091
9	(Constant)	-1.374	.107	-12.790	.000		
	X _{i8}	5.942E-02	.026	2.320	.021	.092	10.913
	X _{i9}	.110	.018	6.251	.000	.461	2.167
	X _{i15}	5.845E-02	.007	8.270	.000	.812	1.232
	X _{i14}	7.669E-02	.011	7.225	.000	.522	1.915
	X _{i5}	.415	.021	19.349	.000	.228	4.377
	X _{i4}	.393	.021	18.399	.000	.261	3.830
	X _{i11}	3.071E-02	.007	4.262	.000	.933	1.071
	X _{i6}	.146	.033	4.371	.000	.912	1.096
	X _{i16}	6.704E-02	.023	2.940	.003	.105	9.513

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

a Dependent Variable: Y_I

The coefficients obtained from model 9 are all found significant and this supports the assumption of linearity between the Yi's and the Xij's and $\forall j's$.

The scatter diagram, Figure- III also confirms the absence of heteroscedasticity of variances of all the residuals.

In Table 4 we see that the value of the Durbin-Watson statistic is 1.713 which is very close to 2. It thus speaks of the fast that the residuals are independent.

The Normal Probability Plot of Standardized Residuals, given in Figure-II, indicates that the residuals follow a joint normal distribution which means that the data are drawn from a normal population. It can be noticed from Table 6 (Co-efficients) that all the tolerance limits for the regression coefficients are less than 0.01 and the variance inflation factor (VIF) is not greater than 100. Therefore, it may be inferred that multicollinearity is absent.

The histogram shown in Figure -I, clearly depicts strong evidence of supporting the normal density function. It indicates that the data are drawn from a normal distribution.

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

TABLE – 7

Excluded Variables

		Beta In	t	Sig.	Partial Correlation	Collinearity Statistics		
Model						Tolerance	VIF	Minimum Tolerance
1	X _{i6}	.034	1.530	.126	.055	.997	1.003	.997
	X _{i16}	.145	2.169	.030	.077	.106	9.414	.106
	X _{i9}	.385	15.945	.000	.495	.619	1.615	.619
	X _{i10}	.056	2.591	.010	.092	1.000	1.000	1.000
	X _{i11}	.103	4.717	.000	.166	.982	1.019	.982
	X _{i14}	.320	12.495	.000	.408	.608	1.646	.608
	X _{i15}	.224	10.163	.000	.341	.872	1.146	.872
	X_{i4}	.053	2.310	.021	.082	.909	1.100	.909
	X _{i5}	.239	10.927	.000	.364	.870	1.149	.870
2	X _{i6}	.011	.570	.569	.020	.991	1.009	.616
	X_{i16}	.106	1.822	.069	.065	.106	9.430	.101
	X _{i10}	.047	2.488	.013	.089	.999	1.001	.619
	X_{i11}	.058	2.976	.003	.106	.959	1.043	.605
	X _{i14}	.231	9.641	.000	.326	.562	1.779	.502
	X_{i15}	.192	9.970	.000	.336	.863	1.159	.586
	X_{i4}	.041	2.040	.042	.073	.908	1.102	.589
	X_{i5}	.168	8.315	.000	.285	.816	1.226	.580
3	X _{i6}	.022	1.241	.215	.044	.987	1.013	.586
	X _{i16}	.090	1.634	.103	.058	.106	9.439	.101
	X_{i10}	.044	2.475	.014	.088	.999	1.001	.586
	X _{i11}	.061	3.374	.001	.120	.958	1.043	.586
	X _{i14}	.224	9.948	.000	.335	.562	1.781	.483
	X_{i4}	.048	2.577	.010	.092	.906	1.104	.557
	X_{i5}	.139	7.137	.000	.247	.794	1.260	.578
4	X _{i6}	.002	.111	.912	.004	.973	1.028	.482
	X _{i16}	.099	1.901	.058	.068	.106	9.442	9.685E-02
	X _{i10}	.035	2.043	.041	.073	.995	1.005	.482
	X _{i11}	.063	3.671	.000	.130	.958	1.043	.483
	X _{i4}	.050	2.856	.004	.102	.906	1.104	.462
	X _{i5}	.116	6.230	.000	.218	.780	1.282	.482
5	X _{i6}	001	054	.957	002	.972	1.029	.481

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

	X _{i16}	.112	2.202	.028	.079	.106	9.457	9.653E-02
	X _{i10}	.030	1.810	.071	.065	.993	1.007	.481
	X _{i11}	.053	3.161	.002	.113	.949	1.053	.482
	X _{i1}	.468	17.434	.000	.530	.273	3.666	.235
6	X _{i6}	.052	3.600	.000	.128	.931	1.074	.229
	X _{i16}	.117	2.726	.007	.097	.106	9.457	9.235E-02
	X _{i10}	.039	2.756	.006	.098	.992	1.008	.235
	X _{i11}	.054	3.780	.000	.134	.949	1.053	.234
7	X _{i6}	.060	4.160	.000	.148	.916	1.091	.229
	X _{i16}	.112	2.619	.009	.094	.106	9.469	9.230E-02
	X _{i10}	.037	2.690	.007	.096	.991	1.009	.234
8	X _{i16}	.124	2.940	.003	.105	.105	9.513	9.163E-02
	X _{i10}	.038	2.732	.006	.098	.991	1.009	.229
9	X _{i10}	.037	2.734	.006	.098	.991	1.009	9.162E-02

a Predictors in the Model: (Constant), X_{i8}

b Predictors in the Model: (Constant), X_{i8}, X_{i9}

c Predictors in the Model: (Constant), Xi8, Xi9, Xi15

d Predictors in the Model: (Constant), X_{i8}, X_{i9}, X_{i15}, X_{i14}

e Predictors in the Model: (Constant), Xi8, Xi9, Xi15, Xi14, Xi5

f Predictors in the Model: (Constant), X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5} , X_{i4}

g Predictors in the Model: (Constant), X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5} , X_{i4} , X_{i11}

h Predictors in the Model: (Constant), X_{i8}, X_{i9}, X_{i15}, X_{i14}, X_{i5}, X_{i4}, X_{i11}, X_{i6}

i Predictors in the Model: (Constant), X_{i8} , X_{i9} , X_{i15} , X_{i14} , X_{i5} , X_{i4} , X_{i11} , X_{i6} , X_{i16}

j Dependent Variable: YI

Let us recall that some variables are loaded with insignificant coefficients, and that each variables with almost zero-coefficients may well be removed. The table above shows such variables being removed step by step.

TABLE-8

Case Number	Std. Residual	YI	Predicted Value	Residual				
56	-3.318	1.14	1.7098	5720				
121	3.100	1.86	1.3218	.5345				
164	-3.218	1.36	1.9106	5548				
656	-3.430	.59	1.1790	5913				
697	-3.352	.54	1.1203	5779				
741	-3.428	.75	1.3423	5909				

Casewise Diagnostics

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

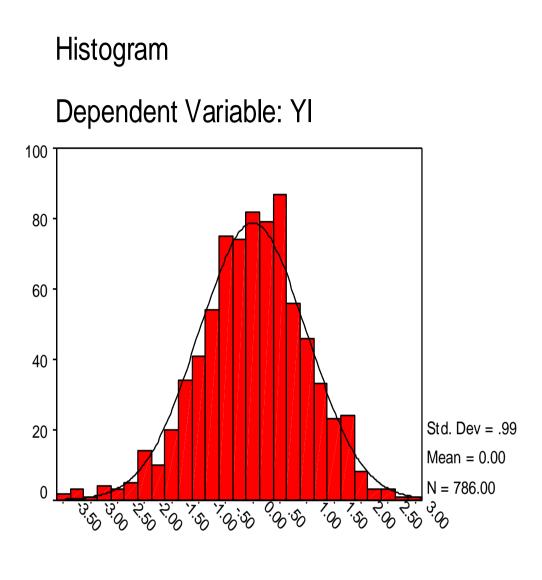
a Dependent Variable: Y_I

As evident from Table-8 above, the case 56,121,164, 656,697,741 are the outliers which are the observations that appear inconsistent with the remainder of the data set.

TABLE – 9

Residuals Statistics

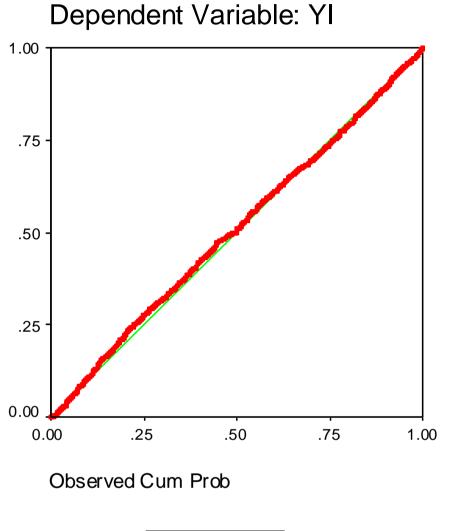
	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	2.783E-02	2.4138	1.1473	.4179	786
Std. Predicted Value	-2.679	3.031	.000	1.000	786
Standard Error of	7.603E-03	8.226E-02	1.867E-02	8.224E-03	786
Predicted Value					
Adjusted Predicted Value	2.292E-02	2.4094	1.1471	.4180	786
Residual	5913	.5345	-1.7993E-15	.1713	786
Std. Residual	-3.430	3.100	.000	.994	786
Stud. Residual	-3.440	3.114	.000	1.002	786
Deleted Residual	6068	.5391	1.090E-04	.1743	786
Stud. Deleted Residual	-3.464	3.131	.000	1.004	786
Mahal. Distance	.528	177.724	9.987	13.326	786
Cook's Distance	.000	.096	.002	.005	786
Centered Leverage Value	.001	.226	.013	.017	786

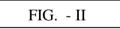

a Dependent Variable: Y_I

From Table-9, one may easily see the minimum and maximum values of the namely predicted value (of the observation) contained in the considered data, residual, Cook's distance, centered leverage values, etc., which explain some information of the observations contained in the considered data and used in the analysis.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES ISSN PRINT 2319 1775 Online 2320 7876

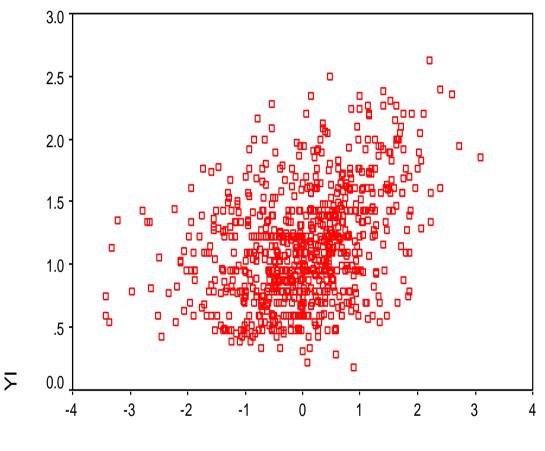
Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021




Regression Standardized Residual

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

NORMAL PROB. PLOT OF REGRESSION STANDARDIZED



ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

Scatterplot

Dependent Variable: YI

Regression Standardized Residual

FIG. - III

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

5. Conclusions

All the assumptions and criteria laid down are found fulfilled and satisfied by the proposed models. Thus, the testing of the above hypothesis and diagnostic checks confirm that the models fit the data well.

The considered independent variables could predicts the values of the dependent variables. For the model, it was R = 0.907 (before) and R=0.925 (after) the application of stepwise regression respectively, meaning that out of the total variation, 90.7 and 92.5 percent could be explained by the independent variables.

An interesting observation is that the elasticity of price was found inelastic (it was pointed out by the (+) ve sign of the regression co-efficient of price).

To be precise, the following had been either experienced or observed:

- (1) Fertilizers, as it is generally expected, have as significant effect on the yield. This finding along with the farmer's wailings for inadequate amount of fertilizers serves a pointer to the fact that, even though we did achieve substantial progress through special programmes for developing small form agriculture, there exists further scope to increase utilization of fertilizers. So, it demands for opening more fertilizer cells and sale branches in the state.
- (2) Cropping pattern also substantially influences the increase of production. This suggests that more and more portion of cultivable area must be allowed to enter under this pattern, if possible so that the production rapidly increases.
- (3) Price of fertilizers is found inelastic (as indicated by the (+) ve sign). This means that consumption of fertilizers in Manipur cannot be influenced by their prices and hence it may be asserted that the policies affecting fertilizer prices are not likely to have serious impact on the growth of the agricultural sector and on the economy if the prices are not allowed to change drastically.
- (4) This study also suggests that HYV's be sown on a larger scale and more and more area be brought under this to boost crop yield. For this, infrastructural facilities are indispensable in Manipur.

This is concerned with crop estimation practices (for plannings and policy makings). The findings point out that the models may be used as crop production model in the region.

References

Afifi, A.A. and Clark, V. (1984) : Computer –Aided Multivariate Analysis. Chapman & Hall, London.

Census of India (1991) : District Census Handbook, Imphal, Director of Census Operations, Manipur.

Cochran, W.G (1977) : Sampling Techniques. John Wiley, New York.

Dholakia, R.H. and Majumdar, J. (1995): Estimation of Price Elasticity of Fertilizer Demand at Macro Level in India. *Indian Jn. of Agri. Econ.* (Jan.-March,

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 06, 2021

1995), Indian Society of Agricultural Economics, Bombay, Vol. 50, No.1. Page 36-45.

- Economic Review (1994-95): Directorate of Economics and Statistics, Govt. of Manipur., Imphal.
- Kaur, R. and Sekarwar, H.S. (1997) : A Statistical Study to Evaluate the Relative Performance of Different Sources of Phosphorus in a Rice-Rice Cropping System. Annals of Agricultural Research (September, 1997), *Indian Society of Agricultural Science*, New Delhi, Vol. 18, No. 3, pp. 285-289.
- Parikh, A. and Mosley, S. (1986) : Fertilizer Response in Haryana. Ind. In. of Agri. Econ. (April-June, 1986), Indian Society of Agricultural Economics, Bombay, Vol. 41 No. 2, pp. 141-153.
- Report on Agricultural Census, (1980-81) and Input Survey, (1981-82) of Manipur: Department of Agriculture, Govt. of Manipur, Imphal.
- Statistical Abstract of Manipur, 2001: Directorate of Economics and Statistics, Govt. of Manipur.
- Younger, M.S. (1979) : A Handbood of Linear Regression. Wadsworth, Inc., Belmont, California.

