ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 2022

EVALUATION OF PISTACHIONUT SHELLDERIVED ACTIVATED CARBONASANADSORBENTFOR UPTAKE OF DIFFERENTDIBASICACIDS

Paled Maheshwari.

Department of chemistry Government First Grade College Bidar

Abstract

In this study, adsorption of different dibasic acids was performed on pistachio shell carbon, which was used as an adsorbent, asit is serves as eco-friendly adsorbents. It has proven to be significantly effective with the provision of satisfactory adsorption capacities for the removal of pollutants from waste water. We have studied adsorption on different dibasic acid by taking pistachio shell carbon as an adsorbent.

The dibasic acids under study were oxalic acid, malonic acid, succinic acid and Glutaric acid. Pistachionutshellisthebestmaterialthatcanbemadeintocarbonasthey have a lot of micropores, low ash content high water Solubility and high reactivity. Pistachio nut shell carbon has become one of the best forms of carbon for waterfiltration and water Purification in recent years. Additionally, it can effectively absorb Certain impurities.

Inthevery firststepwecollectpistachionutshellandremoveddirtandunwanted substances from it. Then the shell is smashed and crushed and put it in acontainer or furnace and get it for heating. The heating is done until the pistachio nutshell by product it is the pistachio nut shell processed into carbonation of the latter toproduce pistachio nut shell carbon in the form of burned carbon. In the run of burningof pistachio nut shell, the heating temperature should be programmed to increase from the room temperature to the desired carbonization temperature. The overall preparation by by by hemical method.

The adsorption isotherm for Langmuir adsorption isotherm and Freundlich adsorption isotherm was studied for different dibasic acids by taking pistachio shell carbon as an adsorbent.

The results obtained when compared with different acids the conclusion obtained was compared with differentdibasic acids (oxalic acid, malonic acid, succinic acid and glutaric acid). From the reading sobtained it was observed that extent of adsorption of oxalic acid (0.01182), malonic acid (0.01166), succinic acid (0.01263) and glutaric acid (0.01221) reason behind the above conclusion may bethe presence of CH₂ group. the extent of adsorption of, succinic acid (0.01263) oxalic acid (0.01182) the reason behind the above conclusion is the presence of 2 CH₂ group in succinic acid or absence of 2 CH₂ group in oxalic acid.

Introduction:

Adsorption is the adhesion of atoms, ions or molecules from a gas liquid or dissolved solid to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. Adsorption is present in many natural, physical, biological and chemical system and is widely used in industrial applications such as heterogeneous catalysts, Coconut shell Carbon, capturing and using waste heat to provide cold water for air conditioning and other process

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 2022

requirements.Garlic processing by-products include skins, outer leaves, tops, and bottoms. Currently, these materials are disposed of in landfills or used as soil amendments, which result in negative environmental impacts and phytotoxicity to plants, respectively. These materials need to be economically and environmentally managed.

Natural adsorbents are plentiful, inexpensive, require little processing, and areeffective inremoving pollutants. Natural adsorbents are divided into four groups based on their availability status: waste materials from agricultural, fruit waste, plantwaste, and bio adsorbents. Solids agricultural wastes are a cheap and abundant source of resources. Sugarcane bagasse, rice husk, oil palm shell, cotton waste, cashew nutshell, garlic peel, almond shell, and other agricultural waste adsorbents can be used to remove pollutants effectively.

Pistachio processing by – products include pistachio shell. Currently, thesematerials are disposed of inlands or used assoilamendments, which results innegative environmental impacts and phytotoxicity to plants, respectively. These materials need to be economically and environmentally managed.

Fortheaimofwastewatertreatment, the biosorption of Cr(VI) by the pistachio nut shellin a batchresearched depth. To type reactor was in maximizeCr(VI)removalfromaqueoussolutionsandequilibriumisothermsandkineticdata,theeffe ctsofinitialCr(VI)concentration,time,andpHwereexplored.Fromasolution containing 3000 ppm of Cr, the pistachio nut shell adsorption capacity wasreported to be 103.09 mg/g of adsorbent (VI). concluded that the LangmuiradsorptionisothermwasmoreappropriateforexplainingequilibriumthantheFreundlicha dsorptionisotherm. Gibbs' free energy was spontaneous for all interactions, and theadsorptionprocess had exothermicenthal pyvalues.

Water contamination by fluoride is a major concern in many places of theworld. When its concentration in drinking water is more than 1.5 mg/L, which is themaximumallowableconcentrationoffluorideby the World Health Organization (WHO), it can become harmful to people's health, for example, causing dental orskeletal fluorosis.

Pistachio nut shell carbon as anadsorbent, as we know that adsorbents playsa very vital role in the adsorptionprocesses.wehavesimplyusedthecriteria of eco-friendly adsorbents. It has proven to be significantly effective with the provision of studied adsorption on different monobasic and dibasicacid by taking pistachio nut shell carbon as an adsorbent.

ISOTHERMS

The adsorption of gases and solutes is usually described through isotherms, i.e the amount of adsorbate on the adsorbent as a function of its pressure (if gas) or concentration (for liquid phase solutes) at constant temperature. The quantity adsorbed is nearly always normalized by the mass of the adsorbent to allow comparison of different materials. To date, 15 different isotherms models have been developed.

FREUNDLICH ADSORPTION ISOTHERM

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 202

The first mathematical fit to an isotherm was published by Freundlich and Kuster (1906) and is purely empirical formula for gaseous adsorbates:

$$x/m = Kp^{1/n}$$

Where X is the mass of adorbate adsorbed, m is the mass of the adsorbent, p is the pressure of adsorbate (this can be changed to concentration if investigation solution rather than gas), and k and n are the empirical constant for each adsorbent- adsorbate pair at a given temperature.

LANGMUIR ADSORPTION ISOTHERM

Irving Langmuir was the first to device a scientifically based adsorption isotherm in 1918. The model applies to gases adsorbed on solid surfaces. It is a semi-empirical isotherm with a kind basis and was derived based on statistical thermodynamics.

If we define surface coverage, θ as the fraction of the adsorption sites occupied, in the equilibrium we have:

 $K=k/k_{-1}=\theta/(1-\theta)P$, or $\theta=KP/1+KP$,

Where P is the partial pressure of the gas or the molar concentration of the solution. For every low pressure $\theta \approx KP$, and for high pressure $\theta \approx 1$.

ADSORBENT USED

Fig.2 crushed pistachio Nut shell

Fig.3 pistachio nut shell carbon

The use of pistachio nut shell carbon as an adsorbent of the industrial pollutantis a new trend. The pistachio nut shell carbon has a capability as an absorbent since ithas high carbon content and density low ash content and uniform pore distribution. As an agriculture waste material, the use of pistachio nut shell carbon also becomes a solution for environment. Problems with a low- cost production. Moreover, Iran is atropical country provide a large number of pistachio nut shell as a raw material forcarbon.

Pistachio nut shell carbon are unique and versatile adsorbent and they are usedfor the removal of undesirable odour, colour, taste, and other organic and inorganicimpurities (generally referred to as adsorbates) from domestic and industrial wastes, for air purification inhabited places restaurants, food processing, removal of colorfromvarioussyrupsandpharmaceutical products, in air pollution control from industrial and automobile exhaust and in a variety of gas phase applications. They are also well known for

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 202

their applications in medicine for the removal of toxins andbacterialinfections in certain alignments.

Adsorption by pistachio nut shell carbon is one of the most frequently usedmethod to remove organic compounds from water, because pistachio nut shell carbonpossess perfect adsorption ability for chloro phenols. In this project, the objective is toinvestigate how the adsorption capacity of pistachio nut shell carbon is influenced by elevated temperature using different concentrations of parachlorophenolastheads or bate.

STRUCTUREOFPISTACHIONUTSHELLCARBON

Adsorptiontakesplaceatthesurfaceofpistachionutshellcarbon. Thesurfacecharacteristics of pistachio nut shell carbon play a crucial role in adsorption fromaqueous solutions and catalytic properties of carbon. The structure of pistachio nutshell carbon is classified based on the activities that occur at the surface of the carbon. The structure of pistachio nut shell carbon surface can therefore be viewed in twodimensionsnamely, physical structure and chemical structure.

PHYSICALSTRUCTURE OFPISTACHIO NUTSHELLCARBON

This refers to how the atoms of pistachio nut shell carbon is linked together and howthis arrangement actually give rise to the adsorption ability of pistachio nut shellcarbon it also describes the various for sizes available on the surface of pistachio nutshell carbon which is responsible for its wide range of applicability in the sense thatthe four size of any particular pistachio nut shell carbon determine to a large extentwhat it is used for. The physical structure of pistachio nut shell carbon is furtherdivided into:

POROUSSTRUCTURE

Non-graphitizingcarbon(i.e.pistachionutshellcarbonwitharandomarrangementof microcrystalline, strong cross- linking between neighbouring crystallites and well-developedporousstructure)wasfoundtohaverelativelylowdensity(lessthan2gm/cm^3). Theporo usstructureformedduringcarbonizationprocessisfurtherdevelopedduringactivation process.

Activation process is a process through which small, low volume pores whichincrease the surface area of carbon are created within its structure by either heatingcarbon at temperature changes between 600 to 1200 degree celsius in the absence ofoxygen or by impregnating carbon with certain chemicals such as acids, strong basesor salt followed by heating at low temperatures of about 400 to 700 degree Celsius. This process enlarges the diameter od the pores and improve their volume. The nature of the raw material used for the carbonization determines the structure of the poresgenerated and the poresized is tribution. Activation carbon pores are categorized based on their function, we have,

particles consisting of gaps between carbon plates of about 1-5 molecular diameter insize.

PORES FOR TRANSPORT: these are the largest pores within the particle. They vary from pores greater than 5 molecular diameter stovisible cracks. They consist of a variety of different sizes and shapes.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 202

Basedontheirsizes,3groupsofporescanbedistinguishedandtheyare:

- ➤ Micro-pores(<2nmdiameter)
- ➤ Meso-pores(2-50nmdiameter)
- ➤ Macro-pores(>50nmdiameter)

Micro-pores generally contribute to the bulk part of the internal surface area whilemeso-pores are generally regarded as highways into the carbon particles and are crucial kinetics. According to Duninin and Zaverina, a micro-porous active carbon is produced when the degree of burn-off is less than 50%, micro-porous active carbon is produced when the extent of burn-off is between 50% and 75%, the product will contain a mixture of all types of pores.

The classification of pores by the Dunininis based on their width which represents the distance between the walls of a slit shaped pore. This classification has now been adopted by the international union for pure and applied chemistry.

Adsorptioninmicroporeswhoseeffectiveradiiislessthan2nmoccursthrough volume filling with no capillary condensation taking place. The adsorptionenergy in micro-pores is much larger compared to other pore types, their volumerange between 0.15-0.70cm3/gm.

PREPARATION OFPISTACHIO NUTSHELLCARBON

Inthevery firststepwecollectpistachionutshellandremoveddirtandunwanted substances from it. Then the shell is smashed and crushed and put it in acontainer or furnace and get it for heating. The heating is done until the pistachio nutshell by product it is the pistachio nut shell processed into carbonation of the latter toproduce pistachio nut shell carbon in the form of burned carbon. In the run of burningof pistachio nut shell, the heating temperature should be programmed to increase from the room temperature to the desired carbonization temperature. The overall preparation by by by hemical method.

Adsorption process by different mono basic acid (Acetic acid, Propionic acid) dibasic acid (Oxalic acid and Succinic acid

Materials Used: pistachio nut shell carbon, Dibasic acids (Oxalic acid, Malonic acid, Succinic acid and glutaric acid), NaOH, Phenolphthalein, Stoppered bottle, Burette, Pipette, Funnel, Conical flask.

PROCEDURE:

Prepared aqueous solution of acids into numbered flask as labelled, the total volume of each solution is 50ml taken in Stoppard bottles. Transfer 10ml of the solution from each bottle into the conical flask. Add 2-3 drops of Phenolphthalein indicator and titrate against NaOH. Once the end point is reached, read the burette reading. The volume of baseV₁. Calculate the actual concentration of oxalic acid C₁ in the flask number 1 to 5 respectively, and write it down in the table. Using practical balance weigh 5 portions of pistachio nut shell carbon, each portion1 gram. Put pistachio nut shell carbon into number flask into stoppers and shake them, wait for 20 minutes, the process of adsorption is in progress. Mix the mixtures for several times by

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 2022

shaking the flask. (The process of adsorption is a function of times it is important to put onion feel into flask at the same time to provide adsorption for the same period in each flask). Filter the mixtures into clean and dry flask to avoid disturbing effect of adsorption of acid into filtering paper, remove away the first portion of filtration approximate of 5ml. Determine the final concentration of acid C, in each of the flask after adsorption from each solution, pipette out 10ml of oxalic acid solution and transfer it to clean and dry conical flask. To this conical flask containing oxalic acid solution at 2 to 3drops ofPhenolphthalein indicator. Now, titrate this solution against NaOH in the burette, note down the burettereading. The volume of base V_2

PROCEDURE TABULAR COLUMN:

Dilution of acid

Bottle No.	Vol. of acid added (0.5N)	Volume of water added in ml	Amount of pistachio nut shell carbon added in gm
1	50	00	1
2	40	10	1
3	30	20	1
4	20	30	1
5	10	40	1

TABULAR COLUMN: Oxalic acid

SINO.	Initialconcentratio n ofoxalicacid(C ₀)	Vol.oftitranttakeni nml	Amt.ofpistachioshe Ilcarbonaddedin	Burettereading	Ce=B.Rx0.1/10 Eq.	X=C ₀₋ C ₂ /20amountadsor	m/x	Log(x/m)	LogCe	$C_{c}(x/m)$
1	0.5	10	1	10.4	0.104	0.019 8	0.019 8	- 1.703 3	- 0.982 9	0.0020 592
2	0.4	10	1	8.6	0.086	0.015 7	0.015 7	- 1.804 1	- 1.065 5	0.0013 502
3	0.3	10	1	6.2	0.062	0.011 9	0.011 9	- 1.924 4	- 1.207 6	0.0007 378
4	0.2	10	1	4.4	0.044	0.007 8	0.007 8	- 2.107 9	- 1.356 5	0.0003 432
5	0.1	10	1	2.2	0.022	0.003 9	0.003 9	- 2.408 9	- 1.657 5	0.0000 858

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 2022

TABULAR COLUMN: Malonic acid

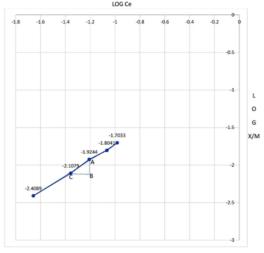
SINO.	Initialconcentratio n ofoxalicacid(C ₀)	Vol.oftitranttakeni nml	Amt.ofpistachioshe Ilcarbonaddedin	Burettereading	Ce=B.Rx0.1/10 Eq. conc. of acid in mol/dm ³	X=C ₀ . C _o /20amountadsor bedin moles		Log(x/m)	LogCe	C _e (x/m)
1	0.5	10	1	10.8	0.108	0.0196	0.0196	- 1.70274	-0.9665	0.00211 68
2	0.4	10	1	8.9	0.089	0.01555		- 1.80826	-1.0506	0.00138 39
3	0.3	10	1	6.7	0.067	0.1165	0.1165	- 1.93367		0.00078 05
4	0.2	10	1	4.7	0.047	0.00765		- 2.11633		0.00035 95
5	0.1	10	1	2.3	0.023	0.00385		- 2.41453	-1.6382	0.00008 855

TABULAR COLUMN: Succinic acid

SINO.	Initialconcentration ofsuccinicacid(C ₀)	Vol.oftitranttakeninml	Amt.ofpistachioshellcarbo naddedin	gm Burettereading	Ce=B.Rx0.1/10Eq.conc.ofacid in	X=C ₀ . C _o /20amountadsorbedin moles	m/x	Log(x/m)	LogCe	C _e (x/m)
1	0.5	10	1	7.8	0.078	0.0211	0.0211	- 1.67571	- 1.10790	0.001645 8
2	0.4	10	1	6.4	0.064	0.0168	0.0168	- 1.77469	- 1.19382	0.001075 2
3	0.3	10	1	4.4	0.044	0.0128	0.0128	- 1.89279	- 1.35654	0.000563 2
4	0.2	10	1	3.4	0.034	0.0083	0.0083	- 2.08092	- 1.46852	0.000282 2
5	0.1	10	1	1.7	0.017	0.00415	0.00415		- 1.76955	0.000070 55

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 2022


TABULAR COLUMN:

Glutaric acid

SINO.	Initialconcentratio n ofoxalicacid(C ₀)	Vol.oftitranttakeni nml	Amt.ofpistachioshe Ilcarbonaddedin	Burettereading	Ce=B.Rx0.1/10 Eq. conc. of acid in mol/dm ³	X=C ₀ . C _e /20amountadsor bedin moles	x/m	Log(x/m)	LogCe	C _e (x/m)
1	0.5	10	1	9.5	0.095	0.02025	0.02025	- 1.69357		0.00192 375
2	0.4	10	1	7.7	0.077	0.01615	0.01615	- 1.79182		0.00124 355
3	0.3	10	1	5.5	0.055	0.01225	0.01225	- 1.91186		0.00067 375
4	0.2	10	1	3.3	0.033	0.00835	0.00835	- 2.07831		0.00027 555
5	0.1	10	1	1.9	0.019	0.00405	0.00405	- 2.39254		0.00007 65

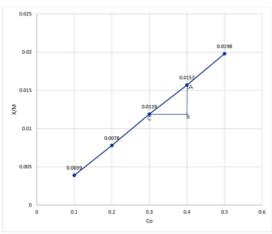
EVALUATION OF PISTACHIO NUT SHELL DERIVED ACTIVATED CARBON AS AN ADSORBENT FOR UPTAKE OF DIFFERENT DIBASIC ACIDS

GRAPH: FREUNDLICH ADSORPTION ISOTHERM (OXALIC ACID) $_{\rm LOG\ Ce}$

Scale= X-aixs - 1 unit =0.5cm

Y- axis - 1 unit=0.5cm

SLOPE= AB BC


= (-1.9244)-(-2.1079) (-1.20)-(-1.35)

 $=\frac{0.1835}{0.15}$

= 1.22

EVALUATION OF PISTACHIO NUT SHELL DERIVED ACTIVATED CARBON AS AN ADSORBENT FOR UPTAKE OF DIFFERENT DIBASIC ACIDS

GRAPH: LANGMUIR ADSORPTION ISOTHERM (OXALIC ACID)

Scale= X-aixs - 1 unit =0.1cm

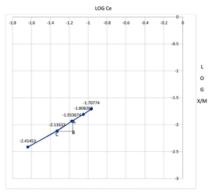
Y - axis- 1 unit=0.005cm

 $SLOPE = \underbrace{AB}_{BC}$

 $= \frac{0.0157 - 0.0119}{0.4 - 0.3}$

 $=\frac{0.0038}{0.1}$

= 0.038

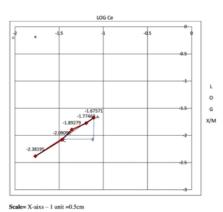


ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 2022

EVALUATION OF PISTACHIO NUT SHELL DERIVED ACTIVATED CARBON AS AN ADSORBENT FOR UPTAKE OF DIFFERENT DIBASIC ACIDS

GRAPH: FREUNDLICH ADSORPTION ISOTHERM ((MALONIC ACID)

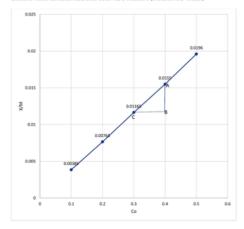

Scale= X-aixs - 1 unit =0.5cm

Y-axis- 1 unit=0.5cm

SLOPE= AB

- = (-1.93367)-(-2.1163) (-1.17)-(-1.32)
- $=\frac{0.182656}{0.15}$
- = 1.217

GRAPH: FREUNDLICH ADSORPTION ISOTHERM (SUCCINIC ACID)

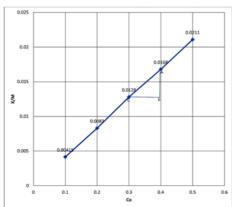

Y- axis- 1 unit=0.5cm

SLOPE= AB

- $= \frac{(-1.77469) (-2.08092)}{(-1.19) (-1.46)}$
- $=\frac{0.30623}{0.27}$
- = 1.1341

EVALUATION OF PISTACHIO NUT SHELL DERIVED ACTIVATED CARBON AS AN ADSORBENT FOR UPTAKE OF DIFFERENT DIBASIC ACIDS

${\bf GRAPH: LANGMUIR\ ADSORPTION\ ISOTHERM\ (\ MALONIC\ \ ACID)}$


Scale= X-aixs - 1 unit =0.1cm

Y-axis- 1 unit=0.005cm

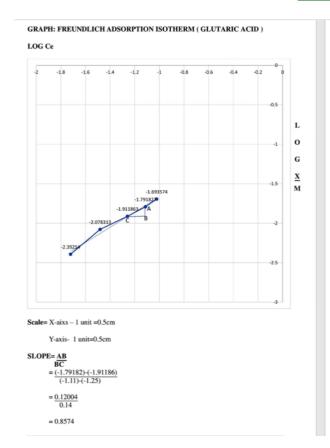
SLOPE= AB BC

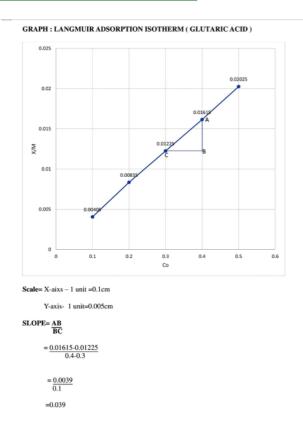
- $= \frac{0.0155 \text{-} 0.01165}{0.4 \text{-} 0.3}$
- $= \frac{0.00385}{0.1}$ = 0.0385

GRAPH: LANGMUIR ADSORPTION ISOTHERM (SUCCINIC ACID)

Scale= X-aixs - 1 unit =0.1cm

SLOPE= AB BC


 $= \frac{0.0168 \cdot 0.0128}{0.4 \cdot 0.3}$


 $=\frac{0.004}{0.1}$

= 0.04

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 2022

APPLICATIONS OF ADSORPTION

The phenomenon of adsorption finds extensive applications in industry, in laboratory an also in various chemical process. A few important applications are listed below:

- 1. Removal of coloring matter:
- 2. In gas masks:
- 3. In separating noble gases:
- 4. In dying of cloth:
- 5. In dehumidizers:
- 6. Heterogeneous catalysts:
- 7. In chromatography:
- 8. In ion exchange resins:
- 9. In quantitative analysis:
- 10. In adsorption indicators:
- 11. In creating high vacuum:
- 12. In froth floatation process:

CONCLUSION

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 2022

Fromthereadingsobtainedit wasobservedthatextentofadsorption of oxalic acid (0.01182), malonic acid(0.01166), succinic acid (0.01263) and glutaric acid (0.01221)reasonbehindtheaboveconclusionmay bethepresenceofCH2group. theextentofadsorptionof, succinicacid(0.01263)>oxalicacid(0.01182)thereasonbehindtheabove conclusionisthepresenceof2CH2groupinsuccinicacid or absenceof2 CH2groupin oxalicacid.

REFERENCES

1. A.dabrowski,advancesincolloidandinterfacescience93(2001)135-224. <u>Volume93, Issues 1-3,80ctober2001</u>,

https://www.researchgate.net/publication/11759023_Adsorption-from_Theory_to_Practice

2. Essentialsofphysical chemistrybyArunBahl,B.S. Bahl,G.D.Tuli.

https://elearn.daffodilvarsity.edu.bd/pluginfile.php/388879/mod_resource/content/1/Essentials%20Of%20Physical%20Chemistry%20-

%20Arun%20Bahl%20%20B.s.%20Bahl.pdf

- 3. An introduction to adsorption chapter-1 by Murido_Maxwell_thesishttps://thesis.library.caltech.edu/9907/1/Murialdo_Maxwell_Thesis_C h1.pdf
- 4. Czelej, Kcwieka, Kkurzydlowski, K.J. (may 2016). "CO2 stability on the Nilow

-index surfaces: van der walls corrected DFT analysis". Catalysiscommunications.80 (5)": 33-38. doi:10.1016/j.catcom.2016.03.017

5. Czelej, K.; Cwieka, K.; Colmenares, J.C.; Kurzydlowski, K.J. (2016). "Insight onthe Interaction of Methanol-Selective Oxidation Intermediates with Au- or/andPd-Containing Monometallic and Bimetallic Core@ShellCatalysts".Langmuir.32(30): 7493–

7502.doi:10.1021/acs.langmuir.6b01906.PMID27373791

- 6. da browski, M. Jaroniec, Adv. Colloid Interface Sci. 271987
- 7. A.Da, browski, M.Jaroniec, J.Oscik, in: E.Matijevic Ed., Surface and Colloid Science, vol. 14, Plenum Press, New York, 1987, p. 8
- 8. .Da, browski, M. Jaroniec, Adv. Colloid Interface Sci. 31 1990 155.
- 9. D.H.Everett,in:D.H.EverettEd. ,SpecialistPeriodicalReports,vol.1,ChemicalSociety,London,1973
- 10. G.Schay,in:E.MatijevicEd.,SurfaceandColloidScience,vol.2,Wiley,NewYork,1970, p.
- 11. J.J.Kipling, Adsorption from Solutions of Non-Electrolytes, Academic Press, London, 1965
- 12. D.H.Everett, Colloidal Dispersions, Special Publication Royal Soc. Chem. 431982 71.
- 13. Olivier Pourret, Jean-Claude Bollinger, Andrew Hursthouse, Eric vanHullebusch<a href="https://hal.science/hal-03689187/document#:~:text=Overall%2C%20adsorption%20is%20a%20surface,(and%2 and more than 10 and

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 11, Issue 04 2022

0even%20surface%20precipitation).

- 14. (De Gisi et al., 2016;Pathak et al.,2015https://www.sciencedirect.com/science/article/abs/pii/B97803239183810002
 57
- 15. AnnaElisabettaMaccarronello,Nuniocardullo,AnaMargaridaSilva,AntonellaDi Francesco, Paulo c. Costa, Francisca Rodriguis, VeraMuccilli.https://www.researchgate.net/publication/377577494_From_waste_to_bioactive_compounds_a_response_surface_methodology_approach_to_extract_antioxida_nts_from_Pistacia_vera_shells_for_postprandial_hyperglycaemia_management#pf1
- 16. Pistachio by-product as a forage source for ruminant nutrition: A review by PirouzShakeri,

 Morteza Hosseini Ghaffari,

 HassanFazaelihttps://www.researchgate.net/publication/311887099_Pistachio_byproduct
- as a forage source for ruminant nutrition A review Part A Reservation chemical composition feed intake performance and digestibility
- 17. Removal of lead, cadmium, zinc, and copper from industrial wastewater bycarbon developed from walnut, hazelnut, almond, pistachio shell, and apricotstoneJ Hazard Mater(2008)
- 18. Mireles, S.I. Removal of lead and arsenic from a queous solution by biocharproduced from locally -sourced biomass.

 A the sis for the degree of master of science, University of Texas, Rio Valley, 2017, 84

