On Coloring Of Cycle Union Of R Copies $O f(R \geq 3)$ Fan Graph , Hanging Pyramid Hjn Umbrella $\mathbf{U n}_{\mathrm{n}, \mathrm{M}}$ Graph

\author{

1. Senthagai.R, 2. Dr. N.Ramya
 1. Mphil Scholar 2. Associate Professor, Bharath Institute of Higher education and research, Selaiyur, Chennai-73
}

Abstract

: In this paper, we introduce the new graphs namely drums graph, Barbell graph, and R copies of cycle union of Fan graphs. We investigate proper coloring for Hanging graph , Hanging pyramid and R copies of cycle union of Fan graphs is satisfying coloring condition.

\section*{Introduction:}

In Graph theory, 'Graph coloring' is a special case of Graph labeling. It is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints [1].In its simplest form it is the way of coloring the vertices of a graph such that no two adjacent vertices share the same color. This is called "Vertex coloring". The concept of graph labeling gained a lot of popularity in the area of Graph theory.

Preliminaries:

A coloring using at most k colors is called a proper " k -coloring". The smallest number of colors needed to color a Graph G is called its "Chromatic number". A Graph that can be assigned k -coloring is k -colorable, and it is k -chromatic if its chromatic number is exactly k.[2]

A fan graph $\mathrm{Fn}=\mathrm{Pn}+\mathrm{K} 1$, is obtained from a cycle Pn , by attaching a pendant edge at each vertex of the Pn.

Let G be a graph and let G1, G2, G3, , Gr $r \geq 2$, be r copies of graph G. Then the graph obtained by adding an edge from Gi to $\mathrm{Gi}+1(1 \leq \mathrm{r} \leq \mathrm{i}-1)$ and Gr to G 1 is called a cycle union of G and is denoted by $C(r . G)[5]$

An umbrella graph $U(m, n)$ is the graph obtained by joining a path P_{n} with the central vertex of a Fan F_{n} [4]

Figure 1 Umbrella $\mathbf{U}_{5,5}$
Hanging pyramid graph obtained by attaching the apex of a pyramid graph to a new pendent edge .[3]

A Graph which is obtained by set out of vertices in to a fixed number of line with i vertices in the i th line and every line the jth apex in that line is joined to the j th and $(j+1)$ th vertex of the nextline is called Pyramid graph

Figure 2 Hanging pyramid

Main results:

Theorem 1:

A cycle union of r copies of ($r \geq 3$) fan graph acknowledges proper coloring and whose chromatic number is 3 .

Proof:

Consider a fan graph $F_{n}=P_{n}+K_{1}$.
Let $\mathrm{G}=\mathrm{C}\left(\mathrm{r} \cdot \mathrm{F}_{\mathrm{n}}\right)$. Let $\mathrm{u}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{r})$ be the apex vertex of $\mathrm{i}^{\text {th }}$ copy of F_{n}.
$\mathrm{u}_{\mathrm{ij}}(1 \leq \mathrm{i} \leq \mathrm{r}, 1 \leq \mathrm{j} \leq \mathrm{n})$ be the $\mathrm{j}^{\text {th }}$ vertex in P_{n} of $\mathrm{i}^{\text {th }}$ copy of F_{n}.
We note that $|\mathrm{V}(\mathrm{G})|=\mathrm{r}(\mathrm{n}+1)$ and $|\mathrm{E}(\mathrm{G})|=2 \mathrm{nr}$.
Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3\}$, coloring has to be classified in to three cases
Case (i): When $\mathrm{r}=3,6,9 \ldots 3 \mathrm{k}(\mathrm{k}=1,2 \ldots)$, coloring has to be given,
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1$, when $\mathrm{i}=1,4,7 \ldots 3 \mathrm{k}-2(\mathrm{k}=1,2 \ldots)$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2$, when $\mathrm{i}=2,5,8 \ldots 3 \mathrm{k}-1(\mathrm{k}=1,2 \ldots)$
(iii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3$, when $\mathrm{i}=3,6,9 \ldots 3 \mathrm{k}(\mathrm{k}=1,2 \ldots)$
(iv) $\mathrm{f}\left(\mathrm{u}_{1 \mathrm{i}}\right)=2$, when $\mathrm{i}=1,3$
(v) $\mathrm{f}\left(\mathrm{u}_{1 \mathrm{i}}\right)=3$, when $\mathrm{i}=2,4$
(vi) $\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=1$, when $\mathrm{i}=1,3$
(vii) $f\left(u_{2 i}\right)=3$, when $\mathrm{i}=2,4$
(viii) $f\left(\mathrm{u}_{3 \mathrm{i}}\right)=1$, when $\mathrm{i}=1,3$
(ix) $\mathrm{f}\left(\mathrm{u}_{3 \mathrm{i}}\right)=2$, when $\mathrm{i}=2,4$

Illustration 1:

Figure 3. Cycle union of three copies of fan graph
Case (ii): When $\mathrm{r}=4,7,10 \ldots 3 \mathrm{k}+1(\mathrm{k}=1,2 \ldots)$
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1$, for $\mathrm{i}=1,4,7,10 \ldots 3 \mathrm{k}-2$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2$, for $\mathrm{i}=2,5,8 \ldots 3 \mathrm{k}-1$
(iii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3$, for $\mathrm{i}=3,6,9 \ldots 3 \mathrm{k}$
(iv) $f\left(u_{i}\right)=2$, for $i=n$
(v) $\mathrm{f}\left(\mathrm{u}_{1 \mathrm{i}}\right)=2$, for $\mathrm{i}=1,3$
(vi) $\mathrm{f}\left(\mathrm{u}_{1 \mathrm{i}}\right)=3$, for $\mathrm{i}=2,4$
(vii) $\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=1$, for $\mathrm{i}=1,3$
(viii) $f\left(u_{2 i}\right)=3$, for $\mathrm{i}=2,4$
(ix) $\mathrm{f}\left(\mathrm{u}_{3 \mathrm{i}}\right)=1$, for $\mathrm{i}=1,3$
(x) $\mathrm{f}\left(\mathrm{u}_{3 \mathrm{i}}\right)=2$, for $\mathrm{i}=2,4$

Illustration 1

Figure 4. Cycle union of 4 copies of fan graph
Case (iii): When $\mathrm{r}=5,8,11 \ldots 3 \mathrm{k}+2(\mathrm{k}=1,2 \ldots)$
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1$, for $\mathrm{i}=1,4,7,10 \ldots 3 \mathrm{k}-2(\mathrm{k}=1,2 \ldots)$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2$, for $\mathrm{i}=2,5,8 \ldots 3 \mathrm{k}-1(\mathrm{k}=1,2 \ldots)$
(iii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3$, for $\mathrm{i}=3,6,9 \ldots 3 \mathrm{k}(\mathrm{k}=1,2 \ldots)$
(iv) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1$, for $\mathrm{i}=\mathrm{n}-1$
(v) $f\left(u_{i}\right)=2$, for $i=n$
(vi) $\mathrm{f}\left(\mathrm{u}_{1 \mathrm{i}}\right)=2$, for $\mathrm{i}=1,3$
(vii) $\mathrm{f}\left(\mathrm{u}_{1 \mathrm{i}}\right)=3$, for $\mathrm{i}=2,4$
(viii) $f\left(u_{2 i}\right)=1$, for $\mathrm{i}=1,3$
(ix) $\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=3$, for $\mathrm{i}=2,4$
(x) $\mathrm{f}\left(\mathrm{u}_{3 \mathrm{i}}\right)=1$, for $\mathrm{i}=1,3$
(xi) $\mathrm{f}\left(\mathrm{u}_{3 \mathrm{i}}\right)=2$, for $\mathrm{i}=2,4$

Illustration 1:

Figure 5. Cycle union of 5 copies of fan graph

Theorem 2

For $\mathrm{n} \geq 3$, hanging pyramid HJ_{n}, whose chromatic number is 3 .

Proof:

Let HJ_{n} be the hanging pyramid graph with $\mathrm{S}=\mathrm{U} \cup \mathrm{V}$, where $\mathrm{U}=\{\mathrm{w}\}$ and $\mathrm{V}=\left\{\mathrm{x}, \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$.

Let the function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2\}$, the vertex labeling is given by
i) $f(w)=2$
ii) $f(x)=1$
iii) $f\left(u_{i}\right)=1$, when ' i ' is an odd
$=2$, when ' i ' is an even
iv) $f\left(v_{i}\right)=1$, when ' i ' is an odd
$=2$, when ' i ' is an even
v) $f\left(y_{i}\right)=1$, when $i=1,4,5,6, \ldots$
$=2$, when $\mathrm{i}=2,3,7,8, \ldots$

Example: HJ_{3}

Figure 6 Hanging pyramid HJ3

Example: HJ_{5}

Figure 7 Hanging pyramid HJ5
Chromatic number for the above graph is 2 .

Theorem 3

The umbrella $\mathrm{U}_{\mathrm{n}, \mathrm{m}}$ graph where chromatic number is 3 .

Proof:

Let $\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{m}\right\}$ be the vertex set, and $\mathrm{E}=\{\mathrm{ui} \mathrm{ui}+1, \mathrm{vj} \mathrm{vj}+1 / 1 \leq \mathrm{i}$ $\leq \mathrm{n}-1,1 \leq \mathrm{j} \leq \mathrm{m}-1\} \cup\left\{\mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i}<\mathrm{n}\right\}$ be the edge set of the graph $\mathrm{U}_{\mathrm{n}, \mathrm{m}}$.

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3\}$ such that
i) $f\left(v_{1}\right)=1$
ii) $f\left(v_{i}\right)=2$, for $i=2,4,6, \ldots, n$
iii) $f\left(v_{i}\right)=3$, for $i=3,5,7, \ldots, n-1$
iv) $f\left(u_{i}\right)=2$, for $\mathrm{i}=1,3,5, \ldots, \mathrm{n}-1$
v) $f\left(u_{i}\right)=3$, for $i=2,4,6, \ldots, n$

Example: Umbrella $\mathrm{U}_{5,3}$

Figure 8 Umbrella graph $\mathbf{U}_{5,3}$

Example: Umbrella $\mathrm{U}_{6,4}$

Figure 9 Umbrella graph $\mathbf{U}_{\mathbf{6}, \mathbf{4}}$

In the above graphs, we conclude chromatic number of $\mathrm{U}_{\mathrm{n}, \mathrm{m}}$ is 3 .

Conclusion:

The Hanging pyramid graph which holds proper coloring and whose chromatic number is 3 , Umbrella graph acknowledges the proper coloring and its chromatic number is 3 where n is any positive integer . A cycle union of r copies of ($r \geq 3$) fan graph acknowledges proper coloring and whose chromatic number is 3 have been discussed.

References

1.Brooks, R.L., "On coloring the nodes of a network", Proc. Cambridge Philos. Soc., 37, pp. 194-197, 1941.
2.Grunbaum, B., "Acyclic coloring of planar graphs", Israel Journal of Graph Theory, 47(3), pp. 163-182, 1973
3.P. Jagadeeswari, K. Ramanathan and K. Manimekalai, "Square Difference Labeling for pyramid graph and its related graphs", International journal of Mathematics And its Applications, 6(1), 91-96 (2018)
4.P. Mythili, 2 S. Gokilamani, Total Coloring of Comb Related Graphs and Umbrella Graph IJCRT Volume 10, Issue 5 May 2022
[5] A.Sugumaran, V.Mohan" Difference cordial labeling of some special graphs and related to fan graphs "International Journal for Research in Engineering Application \& Management Vol-04, Issue-12, Mar 2019

