© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

DOI:10.48047/IJFANS/S1/105

SOME NEW RESULTS ON GENERALIZED BS-**HOMEOMORPHISMS**

K. Gowri and T. Ramachandran

Research Scholar of Mathematics, Mother Terasa Women's University,

Kodaikanal, Tamilnadu, India

E-mail: gowrijalanika@gmail.com

Head & Department of Mathematics,

M. V. Muthiah Govt Arts College for Women,

Dindigul. Tamilnadu, India

E-mail: yasrams@gmail.com

Abstract

we introduce two classes of maps called BS-sgs-homeomorphisms and BS-gsg homeomorphisms and study their properties. These bitopological notions are generalized from the topological notions in bitopological spaces. These generalizations are substantiated with suitable examples and investigated with utmost care.

1. Introduction

Levine has generalized the concept of closed sets to generalized closed sets. Bhattacharyya and Lahiri have generalized the concept of closed sets to semi-generalized closed sets with the help of semi-open sets and obtained various topological properties. Arya and Nour have defined generalized semi-open sets with the help of semi-openness and used them to obtain some characterizations of s-normal spaces. Devi et al defined two classes of maps called semigeneralized homeomorphisms and generalized semi-homeomorphisms and also defined two classes of maps called sgc-homeomorphisms and gsc-homeomorphisms. sgs-homeomorphisms and gsg-homeomorphisms were recently introduced and investigated by Ozcelik and Narli.

In this chapter, we introduce two classes of maps called BS -sgs-homeomorphisms and BS -gsg homeomorphisms and study their properties. These bitopological notions are generalized

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

from the topological notions in [14]. These generalizations are substantiated with suitable examples and investigated with utmost care.

2. New Definitions

Definition 1. Let P be a subset of X. Then P is said to be

- (1) BS -semi-open if $P \subseteq BS cl(BS int(P))$;
- (2) BS -semi-closed if BS -int(BS -cl(P)) \subset P.

The complement of BS -semi-open set is called BS -semi-closed.

- Remark 1. (1) Every BS -closed set is BS -semi-closed but not conversely.
 - (2) Every BS -open set is BS -semi-open but not conversely.

Definition 2. A map $f: X \to Y$ is called

- (1) BS -closed if f(F) is BS -closed in Y for each BS -closed set F in X;
- (2) BS -open if f(F) is BS -open in Y for each BS -open set F in X;
- (3) BS -semi-closed if f(F) is BS -semi-closed in Y for each BS -closed set F in X.

Remark 2. Every BS -closed map is BS -semi-closed but not conversely.

Definition 3. Let P be a subset of X. Then BS -sint(P) = \bigcup {Gi : Gi is BS -semi-open in X and Gi $\subset P$ (2) BS -scl(P) = \cap {Hi : Hi is BS -semi-closed in X and Hi \supset P}.

Definition 4. Let P be a subset of X. Then P is said to be BS -sg-closed if BS -scl(P) \subset U whenever $P \subset U$ and U is BS -semi-open.

The complement of BS -sg-closed set is called BS -sg-open.

The family of all BS -sg-closed sets of X is denoted by BS - $\operatorname{sgc}(X)$.

Remark 3. Every BS -semi-closed set is BS -sg-closed but not conversely.

Definition 5. Let P be a subset of X. Then P is said to be BS -gs-closed if BS -scl(P) \subseteq U whenever P⊂U and U is BS -open. The complement of BS -gs-closed set is BS -gs-open. The family of all BS -gs-closed sets of X is denoted by BS -gsc(X).

Remark 4. Every BS -sg-closed set is BS -gs-closed but not conversely.

Definition 6. A map $f: X \to Y$ is called

- (1) BS -continuous if $f^{-1}(V)$ is BS -closed in X for each BS -closed set V in Y;
- (2) BS -sg-continuous if $f^{-1}(V)$ is BS -sg-closed in X for each BS -closed set V of Y;
- (3) BS -gs-continuous if $f^{-1}(V)$ is BS -gs-closed in X for each BS -closed set V of Y;

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

- (4) BS -sg-closed if f(F) is BS -sg-closed in Y for each BS -closed set F of X:
- (5) BS -sg-open if f(F) is BS -sg-open in Y for each BS -open set F of X.

Remark 5. Every BS -semi-closed map is a BS -sg-closed.

Definition 7. A map $f: X \to Y$ is called

- (1) BS -gs-open if f(F) is BS -gs-open in Y for each BS -open set F of X;
- (2) BS -gs-closed if f(F) is BS -gs-closed in Y for each BS -closed set F of X.

Remark 6. Every BS -sg-closed map is BS -gs-closed.

Definition 8. A map $f: X \to Y$ is called

- (1) BS -sg-irresolute if $f^{-1}(V)$ is BS -sg-closed in X for each BS -sg-closed set V in Y;
- (2) BS -gs-irresolute if $f^{-1}(V)$ is BS -gs-closed in X for each BS -gs-closed set V in Y.

Definition 9. A bijective map $f: X \to Y$ is called

- (1) BS -homeomorphism if f is both BS -continuous and BS -open;
- (2) BS -sg-homeomorphism if f is both BS -sg-continuous and BS -sg-open;
- (3) BS -sgc-homeomorphism if f is BS -sg-irresolute and f⁻¹ is BS -sg-irresolute;
- (4) BS -gs-homeomorphism if f is both BS -gs-continuous and BS -gs-open;
- (5) BS -gsc-homeomorphism if f is BS -gs-irresolute and f⁻¹ is BS -gs-irresolute.

Remark 7. (1) Every BS -sgc-homeomorphism is BS -sg-homeomorphism but not conversely;

- (2) Every BS -sg-homeomorphism is BS -gs-homeomorphism but not conversely;
- (3) Every BS -gsc-homeomorphism is BS -gs-homeomorphism but not conversely.

Definition 10. A space X is called

- (1) BS $-T_{1/2}$ if and only if every BS -gs-closed set is BS -semi-closed;
- (2) BS -Tb if every BS -gs-closed set is BS -closed.

Definition 11. A map $f: X \to Y$ is called BS -gsg-irresolute if $f^{-1}(F)$ is BS -sg-closed in X for each BS -gs-closed set F of Y.

Definition 12. A bijective map $f: X \to Y$ is called BS -gsg-homeomorphism if f and f^{-1} are both BS -gsg-irresolute.

If there exists a BS -gsg-homeomorphism from X to Y, then the bitopological spaces X and Y are said to be BS -gsg-homeomorphic.

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

The family of all BS -gsg-homeomorphisms of X is denoted by BS -gsg h(X).

Definition 13. A map $f: X \to Y$ is called BS -sgs-irresolute if f-1(M) is BS -gs-closed in X for each BS -sg-closed set M of Y.

Definition 14. A bijective map $f: X \to Y$ is called BS -sgs-homeomo- rphism if f and f-1 are both BS -sgs-irresolute.

If there exists a BS -sgs-homeomorphism from X to Y, then the bitopological spaces X and Y are said to be BS -sgs-homemorphic.

3. Properties of BS-gsg-Homeomorphisms

Remark 8. The following two examples show that the concepts of BS -homeomorphisms and BS -gsg-homeomorphisms are independent of each other.

Example 1. Let $X = \{\alpha, \beta, \gamma\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, X, \{\alpha\}\}$. Then the sets in $\{\phi, X, \{\alpha\}\}$ is the sets of $\{\phi, X, \{\alpha\}\}$.

 $\{\alpha\}\$ are called BS -open and the sets in $\{\phi, X, \{\beta, \gamma\}\}\$ are called BS -closed. Let IX: (X, τ_1, τ_2) \rightarrow (X, τ_1 , τ_2) be the identity map. Clearly, I_X is BS -homeomorphism but it is not BS -gsg homeomorphism.

Example 2. Let $X = \{\alpha, \beta\}, \tau_1 = \{\phi, X, \{\beta\}\}, \tau_2 = \{\phi, X, \{\alpha\}\}, \sigma_1 = \{\phi, X\} \text{ and } \sigma_2 = \{\phi, X\}.$ Then the sets in $\{\phi, X, \{\alpha\}, \{\beta\}\}\$ are called BS -open and BS -closed; and the sets in $\{\phi, X\}$ are BS -open and BS -closed. Let $I_X: (X, \tau_1, \tau_2) \to (X, \sigma_1, \sigma_2)$ be the identity map. Clearly, I_X is BS gsg-homeomorphism but it is not BS -homeomorphism.

Example 3. Every BS -gsg-homeomorphism implies both BS -gsc-homeomorphism and BS -sgc homeomorphism. However the converse is not true as shown by the following example.

Example 4. Let $X = \{\alpha, \beta, \gamma\}, \tau_1 = \{\phi, X, \{\beta\}\}\$ and $\tau_2 = \{\phi, X\}.$ Then the sets in $\{\phi, X, \{\beta\}\}\$ are called BS -open and the sets in $\{\phi, X, \{\alpha, \gamma\}\}\$ are called BS -closed. We have BS -sgc(X) = $\{\phi, X, \{\alpha, \gamma\}\}\$ $\{\alpha\}, \{\gamma\}, \{\alpha, \gamma\}\}\$ and BS -gsc(X) = $\{\phi, X, \{\alpha\}, \{\gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\beta, \gamma\}\}\}$.

Let I_X : $(X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2)$ be the identity map. Clearly I_X is both BS -gschomeomorphism and BS -sgc-homeomorphism. Since the set $\{\beta, \gamma\}$ is BS -gs-closed but the set $I_{X}^{-1}(\{\beta,\gamma\}) = \{\beta,\gamma\}$ is not BS -sg-closed, the identity map I_{X} is not BS -gsg-homeomorphism on X.

Remark 9. Every BS -gsg-homeomorphism implies both a BS -gs-homomorphism and a BS -sg homeomorphism.

However the converse is not true as shown by the following example.

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

Example 5. In Example 4, clearly I_x is both BS -gs-homeomorphism and BS -sghomeomorphism. However, I_X is not BS -gsg-homeomorphism.

4. Properties of BS-sgs-Homeomorphisms

Remark 10. Every BS -sgc-homeomorphism and BS -gsc-homeomorphism implies BS -sgshomeomorphism.

However the converse is not true as shown by the following examples.

 $\{\beta\}\}\$ and $\sigma_2 = \{\phi, Y, \{\alpha, \beta\}\}\$. Then the sets in $\{\phi, X, \{\alpha\}, \{\beta\}, \{\alpha, \beta\}, \{\beta, \gamma\}\}\$ are called BS open and the sets in $\{\phi, X, \{\alpha\}, \{\gamma\}, \{\alpha, \gamma\}, \{\beta, \gamma\}\}$ are called BS -closed. Moreover the sets in $\{\phi, Y, \{\beta\}, \{\alpha, \beta\}\}\$ are called BS -open and the sets in $\{\phi, Y, \{\gamma\}, \{\alpha, \gamma\}\}\$ are called BS -closed. We have BS $-\operatorname{sgc}(X) = \operatorname{BS} -\operatorname{gsc}(X) = \operatorname{P}(X) \setminus \{\{\beta\}, \{\alpha, \beta\}\}\$ where $\operatorname{P}(X)$ is the power set of X and BS $-\operatorname{sgc}(Y) = \{\phi, X, \{\alpha\}, \{\gamma\}, \{\alpha, \gamma\}\}\$ and BS $-\operatorname{gsc}(Y) = P(Y) \setminus \{\{\beta\}, \{\alpha, \beta\}\}\$. Clearly the identity map $I_X: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is BS -sgs-homeomorphism but it is not BS sgc-homeomorphism.

Example 7. Let $X = Y = \{\alpha, \beta, \gamma\}, \tau_1 = \{\phi, X, \{\alpha\}\}, \tau_2 = \{\phi, X\}, \sigma_1 = \{\phi, Y, \{\beta\}\} \text{ and } \sigma_2 = \{\phi, X\}, \sigma_1 = \{\phi, Y, \{\beta\}\}, \sigma_2 = \{\phi, Y, \{\beta\}\}, \sigma_3 = \{\phi, Y, \{\beta\}\}, \sigma_4 = \{\phi, Y, \{\phi\}\}, \sigma_4 = \{\phi, Y, \{\phi$ Y, $\{\alpha, \beta\}\$. We have BS -sgc(X) = $\{\phi, X, \{\beta\}, \{\gamma\}, \{\beta, \gamma\}\}\$, BS -gsc(X) = $\{\phi, X, \{\beta\}, \{\gamma\}, \{\alpha, \beta\}\}\$, $\{\alpha, \gamma\}, \{\beta, \gamma\}\}, BS - sgc(Y) = \{\phi, Y, \{\alpha\}, \{\gamma\}, \{\alpha, \gamma\}\} \text{ and } BS - gsc(Y) = \{\phi, Y, \{\alpha\}, \{\gamma\}, \{\alpha, \gamma\}\}, \{\alpha, \gamma\}\}$ $\{\beta, \gamma\}\}$. Define f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(\alpha) = \beta$; $f(\beta) = \alpha$; $f(\gamma) = \gamma$. Clearly f is BS -sgshomeomorphism but it is not BS -gsc-homeomorphism.

Remark 11. Every BS -homeomorphism is BS -sgs-homeomorphism. However the converse is not true as seen from the following example.

Example 8. In Example 7, clearly f is BS -sgs-homeomorphism but it is not BS homeomorphism.

Remark 12. Every BS -sgs-homeomorphism is BS -gs-homeomorphism. However the converse is not true as seen from the following example.

Example 9. Let $X = Y = \{\alpha, \beta, \gamma\}, \tau_1 = \{\phi, X, \{\alpha, \beta\}\}, \tau_2 = \{\phi, X\}, \sigma_1 = \{\phi, Y, \{\beta\}\} \text{ and } \sigma_2 = \{\phi, X\}, \sigma_1 = \{\phi, Y, \{\beta\}\} \text{ and } \sigma_2 = \{\phi, Y, \{\beta\}\}, \sigma_1 = \{\phi, Y, \{\beta\}\}, \sigma_2 = \{\phi, Y, \{\beta\}\}, \sigma_3 = \{\phi, Y, \{\beta\}\}, \sigma_4 = \{\phi, Y, \{\phi\}\}, \sigma_4$ Y, $\{\alpha, \beta\}$. We have BS $-\operatorname{sgc}(X) = \operatorname{BS} -\operatorname{gsc}(X) = \{\phi, X, \{\gamma\}, \{\alpha, \gamma\}, \{\beta, \gamma\}\}, \operatorname{BS} -\operatorname{sgc}(Y) = \{\phi, Y, \{\alpha, \beta\}\}, \operatorname{BS} -\operatorname{Sgc}(Y) = \{\phi, Y, \{\alpha, \beta\}\},$ $\{\alpha\}, \{\gamma\}, \{\alpha, \gamma\}\}\$ and BS -gsc(Y) = $\{\phi, Y, \{\alpha\}, \{\gamma\}, \{\alpha, \gamma\}, \{\beta, \gamma\}\}\}\$. Then, the identity map I: $\{X, \{\alpha\}, \{\gamma\}, \{\alpha, \gamma\}, \{\alpha, \gamma\}\}\}\$. $\tau_1, \tau_2 \rightarrow (Y, \sigma_1, \sigma_2)$ is BS -gs-homeomorphism but it is not BS -sgs-homeomorphism.

Example 10. The map I: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is given by Example 9 is BS -sghomeomorphism but it is not BS -sgs-homeomorphism.

Remark 13. (1) From the Example 10, we can see that any BS -sg-homeomorphism is not BS -sgs-homeomorphism.

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

(2) Every BS -gsg-homeomorphism is BS -sgs-homeomorphism and the converse is not true as seen from the following example.

 $\{\alpha, \beta\}\}\$ and $\sigma_2 = \{\phi, Y, \{\beta, \gamma\}\}\$. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be defined by $f(\alpha) = \beta, f(\beta) = \alpha$ and $f(\gamma) = \gamma$. Clearly f is BS -sgs-homeomorphism but it is not BS -gsg-homeomorphism.

- **Theorem 1.** (1) Every BS -sgs-homeomorphism from BS $-T_{1/2}$ space onto itself is BS -gsg homeomorphism. This implies that BS -sgs-homeomorphism is both BS -sgc-homeomorphism and BS -gsc-homeomorphism.
- (2) Every BS -sgs-homeomorphism from a BS -T_b space onto itself is BS -homeomorphism. This implies that BS -sgs-homeomorphism is BS -gs-homeomorphism, BS -sg-homeomorphism, BS sgc-homeomorphism, BS -gsc-homeomorphism and BS -gsg-homeomorphism.

Proof. (i) In a BS -T_{1/2} space, every BS -gs-closed set is BS -semi-closed. (ii) In a BS -T_b space, every BS -gs-closed set is BS -closed.

 $\{\alpha, \beta\}\}\$ and $\sigma_2 = \{\phi, Y, \{\beta, \gamma\}\}\$. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be defined by $f(\alpha) = \beta$, $f(\beta) = \alpha$ and $f(\gamma) = \gamma$. Clearly f is BS -sgs-homeomorphism but it is not BS -gsg-homeomorphism.

- **Theorem 1.** (1) Every BS -sgs-homeomorphism from BS -T_{1/2} space onto itself is BS -gsg homeomorphism. This implies that BS -sgs-homeomorphism is both BS -sgc-homeomorphism and BS -gsc-homeomorphism.
- (2) Every BS -sgs-homeomorphism from a BS -T_b space onto itself is BS -homeomorphism. This implies that BS -sgs-homeomorphism is BS -gs-homeomorphism, BS -sg-homeomorphism, BS sgc-homeomorphism, BS -gsc-homeomorphism and BS -gsg-homeomorphism.

Proof.

(i) In a BS -T_{1/2} space, every BS -gs-closed set is BS -semi-closed. (ii) In a BS -T_b space, every BS -gs-closed set is BS -closed.

5. Conclusion

We obtain the following diagram from the above discussions.

Where

- (1) BS -gsg-homeomorphism
- (2) BS -sgc-homeomorphism
- (3) BS -gsc-homeomorphism
- (4) BS -sgs-homeomorphism
- (5) BS -sg-homeomorphism
- (6) BS -gs-homeomorphism

6. References

- [1] Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud. R. A. β-open sets and β-continuous mappings, Bull. Fac.Sci. Assiut Univ., 12(1983), 77-90.
- [2] Athisaya Ponmani, S. and Lellis Thivagar, M. Remarks on ultra semi-T_Y S-spaces, Antartica Journal of Mathematics, XXXIIM(4)(2006), 1757-1766.
- [3] Balachandran, K., Sundaram, P. and Maki, H. On generalized continuous maps in topological spaces, Mem.Fac. Sci. Kochi Univ. Math., 12(1991), 5-13.
- [4] Bourbaki, N. General topology, Part I, Addison-Wesley, Reading, Mass., (1966).
- [5] Dunham, W. T1/2-spaces, Kyungpook Math. J., 17(1977), 161-169.

- © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal
- [6] Kelly, J. C. Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- [7] Lellis Thivagar, M., Raja Rajeswari, R. and Athisaya Ponmani, S. Characterizations of ultraseparation axioms via $(1,2)\alpha$ -kernel, Lobachevski Journal of Mathematics, 25(2005), 50-55.
- [8] Lellis Thivagar, M. and Raja Rajeswari, R. Bitopological ultra spaces, Southeast Asian Bulletin of Mathematics, 31(2007), 993-1008.
- [9] Levine, N. A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [10] Levine, N. Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [11] Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [12] Nj°astad, O. On some classes of nearly open sets, Pacific Journal of Mathematics, 15(1965), 961-970.
- [13] Raja Rajeswari, R., Lellis Thiyagar, M., Athisaya Ponmani, S. and Saeid Jafari. Some weak separation axioms in bitopological spaces, Int. Journal of Math. Anal., 3(2)(2009), 87-93.
- [14] Ravi, O. Studies on new class of functions in bitopological spaces, Ph. D., Thesis, Madurai Kamaraj University, Madurai (2006).
- [15] Rose, D. On Levines decomposition of continuity, Canad. Math. Bull., 21(1978), 477-481.