Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -1) Journal Volume 11, Iss 8, Dec 2022

MOLECULAR DOCKING APPLICATION OF JUSTICIA BEDDOMEI ON ANGIO TENSIN CONVERTING ENZYME IN ANTI-HYPERTENSIVE ACTIVITY

Dr. Elavarasi .A,

Associate Professor,

Sir Issac Newton Siddha Medical College and Hospital, Nagapattinam.

ABSTRACT:

Justicia beddomei is a siddha herbal drug having many therapeutic value. Plan of the research application is to catch out the functioning ingredient of Justicia beddomei to bind including ACE by molecular Close method. In tHis application is to catch the efficacy of the lead particle in the Plant Justicia beddomei to bind including core bio functioning amino acid residues, which involve in the enzymatic activity of the Angiotensin -converting enzyme (ACE) that has greater level of important in the management of blood pressure. For tHis application arrengement of Ligand of Justicia beddomei arranged and Translucent metamorphose of the spot protein Human ACE including PDB 1086 is regained from Protein Data Bank. Based on the sequel of the computational application it was introduce that the biofunctioning blend's like Anisotine, Orientin, Adhatodine and Vasicoline being in the Plant Justicia beddomei letout remarkable binding opposed to the spot protein Angiotensin converting enzyme by binding including functioning protein molecule being on the functioning location thereby it was decided that these amalgam have assuring antihypertensive activity. It was decided that the phyto chemicals being in the plant Justicia beddomei possess important anti-hypertensive activity.

KEY WORDS:

Siddha drug, *Justicia beddomei*, Kuruthi azhal, Adatodai, ACE. **INTRODUCTION:**

Adatodai (Justicia beddomei)is a siddha herbal Drug belongs to the Acanthacea family. It is called as Malabar Nut in English. Adatodai (Justicia beddomei) is grown as shrub. Leaf, Flower, Bark and Root used as medicinally in Siddha system of medicine. It has anti spasmodic, Expectorant, Germicide, Anthelmintic and Diuretic activity [2-7]. Justicia beddomei leaf especially used to treat the Kuruthi azhal Noi (Hyper tension) in siddha. Adatodai in siddha used in the treatment of hyper tension in the form of Leaf juice 10-20 drops including honey, Leaf decoction including cardamomum extract decoction. A combination Justicia beddomei root, Grapes (Vitis vinifera), Terminalia chebula decoction including honey and sugar[2]. In tHis molecular Close application help to identifying the functioning particle in the Justicia beddomei in the treatment of Hypertension including Standard drug Captopril. THis molecular close application was done in Noble research solutions in Chennai.

Tab-1List of Phytocomponents Chosen for close [1]

Name of the	Phytochemicals
Herb[3]	Name

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Adhathoda	•	Adhatodine
vasica(Adatodai)	•	Vasicinone
	•	Vasicoline
	٠	Orientin
	٠	Anisotine
	•	Aniflorine

Standard – Captopril Objective:[6-8]

Research paper

The major objective of the application is to catch the efficacy of the lead particle in *Adhathoda vasica(Adatodai)* to bind including these core bio functioning amino acid residues, GLU162, GLN 281, HIS 353, ALA 354, HIS 383, GLU 384, HIS 387, HIS 513, GLU 411, LYS 511, TYR 520, TYR 523 which mediates the enzymatic activity of the Angiotensin-converting enzyme (ACE) that has greater level of significance in the management of blood pressure. ACE involved in the conversion of angiotensin I to Angiotensin ii tend to increase blood pressure (Kuruthi azhal) by narrowing of blood vessels. Hence controlling these amino acid residues hinderthe enzymatic activity of ACE thereby lower the blood pressure (Kuruthiazhal) by exhausting the release of Angiotensin II. Lead particle in the Adhatoda vasica, that hinderthe enzyme ACE will considerably has greatertherapeutic potential in lowering greaterblood pressure (Kuruthi azhal) and in the management of hypertension.

PDB	Name of the Spot of the Application
1086	Arrengement of Human Angiotensin Converting enzyme (ACE)

Fig-1- Human angiotensin converting enzyme (1086)

RECEPTOR ARRENGEMENT

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Crystalline structure of the target protein Human angiotensin converting enzyme with PDB 1086 was retrieved from protein data bank and protein clean-up process was done and essential missing hydrogen atom were being added. Different orientation of the lead molecules with respect to the target protein was evaluated by Autodock version 4 program and the best dock pose was selected based on the interaction study analysis.

Methodology

Docking calculations were carried out for retrieved phytocomponents against target enzyme H1 receptor. Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were added with the aid of AutoDock tools (*Morris, Goodsell et al., 1998*). Affinity (grid) maps of $\times\times$ Å grid points and 0.375 Å spacing were generated using the Autogrid program (*Morris, Goodsell et al., 1998*). AutoDock parameter set- and distancedependent dielectric functions were used in the calculation of the van der Waals and the electrostatic terms, respectively. Docking simulations were performed using the Lamarckian genetic algorithm (LGA) and the Solis & Wets local search method (*Solis and Wets, 1981*). Initial position, orientation, and torsions of the ligand molecules were set randomly. All rotatable torsions were released during docking. Each docking experiment was derived from 2 different runs that were set to terminate after a maximum of 250000 energy evaluations. The population size was set to 150. During the search, a translational step of 0.2 Å, and quaternion and torsion steps of 5 were applied. This Docking Study was done in Noble research solution, Chennai.

Fig-2 -2D and 3D Arrengement of Chosen Ligands

Fig-2 a-Adhatodine

Fig-2 b-Vasicinone


```
Research paper
```

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Fig-2 c-Vasicoline

Fig-2 d-Anisotine

Fig-2 e-Orientin

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Fig-2 g-Captopril

Tab-2-Ligand Landscape of the Blends chosen for close opposed to Angiotensin converting enzyme (1086)

Blend name	Atomic weight g/mol of Ligands	Atomic Formula of Ligands	Donor H -Bound	Acceptor H -Bound	Rotatable Bounds	
Adhatodine	337.416	$C_{20}H_{21}N_3O_2$	1	2	4	
Vasicinone	202.21	$C_{11}H_{10}N_2O_2$	1	3	0	
Vasicoline	291.4	C ₁₉ H ₂₁ N ₃	0	2	2	
Anisotine	349.4	C ₂₀ H ₁₉ N ₃ O ₃	1	5	4	
Orientin	448.14	$C_{21}H_{20}O_{11}$	8	11	3	
Aniflorine	351.4	$C_{20}H_{21}N_3O_3$	1	5	3	
Captopril	217.29	C ₉ H ₁₅ NO ₃ S	2	4	3	

Tab-3-Compact of the molecular close studies of blends opposed to Angiotensin converting enzyme (1086)

Blends Name	Bounden Free power Kcal/mol	Hinderion constant Ki µM (*mM)(**nM)	Electrostatic power Kcal/mol	Intersubatomic power Kcal/mol	Total Conjoint Surface
Adhatodine	-7.76	2.04	-1.43	-8.37	772.606
Vasicinone	-4.95	237.11	-0.24	-5.24	506.99

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper	Journal Volume 11, Iss	8, Dec 2022			
Vasicoline	-7.40	3.76	-1.31	-7.62	671.025
Anisotine	-7.02	7.13	-0.08	-8.19	881.904
Orientin	-8.38	718.10	-0.62	-6.99	974.037
Aniflorine	-6.50	17.12	-0.04	-6.64	710.344
Captopril	-6.75	11.22	-1.47	-7.10	809.837

Tab-4 Amino acid Residue Conjoint of Lead and Standard opposed to

Translucent arrengement of Angiotensin converting enzyme

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

		1															
	Number																
	of																
Blend	Conjoint																
Name	S		Name of Amino acid Conjoints in ACE														
A 11 / 11		353		384	201	407	411			518	523						
Adnatodin	6	HISTIDIN	383	GL	391	407	GL	512	513	VA	ΤY						
e	conjoint	Е	HIS	U	PHE	PRO	U	PHE	HIS	L	R						
	<u>y</u>			384			518	523									
Vasicinon	4		383	GL	387	512	VA	TY									
e	conioint	355 SER	HIS	U	HIS	PHE	L	R									
			281	-	354	369	376		380	384							
Vasicoline	6		GL	353	AL	GL	GL	377	VA	GL	511						
v usie o inite	conioint	162 GLU	N	HIS	A	N	U	ASP	L	U	LYS						
	• • njo me	102 020	- 1	354	369	- 1	-	384	411	<u> </u>	520	523					
Anisotine	9		353		GI	377	383	GI	GI	513	TY	TY					
7 misotine	conioint	162 GUU	HIS	Δ	N	ASP	HIS	U		HIS	R	R					
	conjoint	102 010	277	11	281	282		354	369	376		380	383	384	513	520	523
Orientin	Q			270	GI	202 ТН	353		GI	GI	377	VA	HI	GI	н	520 TV	525 TV
Orientin	conjoint	162 GUU	N		N	R III	HIS		N N			T	S		S	P P	P I I
	conjoint	102 010	1 281	282	1	к 376	1115	380	19	0	5 23	L	0	0	0	K	K
Anifloring	5			202 TU	252	GI	277	VA	282	157	525 TV	527					
Annorme	J	162 CL U		D				VA I	565 LUS	437 DUE	II D						
	conjoint	102 GLU	IN	ĸ	піз	U	ASP	L	піз	PHE	ĸ	PHE					
	0		252	380	202	384	457	511	512	520	523	200					
Captopril	8	281 GLN	353	VA	383	GL	45/	511	513	TY	TY						
	conjoint		HIS	L	HIS	U	PHE	LYS	HIS	R	R	GL					
												r					

ISSN PRINT 2319 1775 Online 2320 <u>7876</u>

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Close PoseFig-3-a-Adhatodine including Angiotensin converting enzyme (PDB-1086)

Fig-3-b-2D Conjoint Design Analysis

Fig-3-c Hydrogen chain designing along core amino acid Analysis

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Fig-4-a-Vasicinone along Angiotensin converting enzyme (PDB-1086)

Fig-4-b-2D Conjoint Design Analysis

Fig-b-c-Hydrogen chain designing along core amino acid Analysis

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Fig-5-a-Vasicoline along Angiotensin converting enzyme (PDB-1086)

Fig-5-b-2D Conjoint Design Analysis

Fig-5-c-Hydrogen chain designing along core amino acid Analysis

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Fig-6-a-Anisotine along Angiotensin converting enzyme (PDB-1086)

Fig-6-b-2D Conjoint Design Analysis

Fig-6-c-Hydrogen chain designing along core amino acid Analysis

Fig-7-a- Orientin along Angiotensin converting enzyme (PDB-1086)

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Fig-7-b- 2D Conjoint Design Analysis

Fig-7-c- Hydrogen chain designing along core amino acid Analysis

Fig-8-a- Aniflorine along Angiotensin converting enzyme (PDB-1086)

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Fig-8-b- 2D Conjoint Design Analysis

Fig-8c- Hydrogen chain designing along core amino acid Analysis

Fig-9-a-Captopril along Angiotensin converting enzyme (PDB-1086)

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Fig-9-b- 2D Conjoint Design Analysis

Fig-9-c- Hydrogen chain designing including core amino acid Analysis

Observation and Inference

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

Total of 6 bio functioning lead blends were regained from the herb *Justicia beddomei*. From reported data of the Plant, The phytochemicals such as Adhatodine, Vasicoline, Anisotine and Orientin reveals maximum of 6 to 9 conjoints including the core functioning amino acid residues being on the spot ACE.Followed by tHis the blends such as Vasicinone and Aniflorine ranked second including the maximum of 4 to 5 conjoints including the functioning location of the spot enzyme ACE in contrast including standard drug Captopril which reveals 8 conjoints over the spot enzyme.

RESULT AND DISSCUSION

List of Phytocomponents in Justicia beddomei Chosen for close shown in Tab-1, Landscape of the Blends chosen for close opposed to Angiotensin converting enzyme (1086) shown in Tab-2, Summary of the molecular close studies of blends opposed to Angiotensin converting enzyme (1086) shown in Tab-3, Amino acid Residue Conjoint of Lead and Standard opposed to Translucent arrengement of Angiotensin converting enzyme shown in Tab-4.Standard drug used as Captopril.Fig-1-shows arrengement of Human angiotensin converting enzyme (1086) from PDB. Fig-2 shows -2D and 3D Arrengement of Chosen Ligands of Adhathoda vasica. Fig-3-9shows Close pose of Ligand (Adhatodine, Vasicoline, Vasicoline, Orientin, Anisotine, Aniflorine) angiotensin including converting Enzyme (PDB -1086). Anisotine has 9 conjoint including amino acids of 162 GLU, 353 HIS, 384 GLU, 513 HIS, 520 TYR, 523 TYR. Orientin has 9 inter activity including amino acids of 162 GLU, 281 GLN, 353 HIS, 354 ALA, 383 HIS, 384 GLU, 513 HIS, 520 TYR, 523 TYR. Adhatodine has 6 conjoint including amino acids of 353 HIS, 383 HIS, 384 GLU, 411 GLU, 513 HIS, 523 TYR. Vasicoline has 6 conjoint including amino acids being in spot ACE of 162 GLU, 281 GLN, 353 HIS, 354 ALA, 384 GLU, 511 LYS. So the herb Justicia beddomei possess importantanti-hypertensive activity.

CONCLUSION

Based on the results of the computational analysis it was decided that the biofunctioning blend's like Anisotine, Orientin, Adhatodine and Vasicoline being in the herb *Justicia beddomei* revels importantbinding opposed to the spot protein Angiotensin converting enzyme by interacting including functioning amino acid being on the functioning location there by it was decided that these blends may exerts assuring anti-hypertensive activity. It was decided that the phytochemicals being in the herb *Justicia beddomei* possess importantantihypertensive activity.

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 8, Dec 2022

References:

- Siva Kumar, Ilango, K et. (2022). Computer Aided Drug Design Approach to Screen Phytoconstituents of Justicia beddomeias Potential Hinderors of SARS-CoV-2 Major Protease Enzyme. Life (Basel, Switzerland), 12(2), 315. <u>https://doi.org/10.3390/life12020315</u>
- 2. Somnath D,Bhinge,Prachi Desi and Chandrakanth S.mugdum,In vitro Anthelmintic Activity ofLeafExtracts of Justicia beddomeiNees (Acanthacea)Opposed to Eudril eugeniae.
- 3. Dr.K.S.Murugesa Mudhaliar, Gunappadam, Mooligai Vaguppu, 2 nd Edition, 2006.(Porutpanbu Nool)
- 4. Dr.S.Somasundaram, Taxonomy of Angiosperm –Part 1&2
- 5. Satkarprasad ,Saileshkumar Ghatuary,Anil Sarathe,Gaurav Dubey Anti Hypertensive activity of Aqueous Extract of Justicia beddomeiin Hypertensive Rats
- 6. Manish kumar ,Vikram s,Chauhan,RaazK ,Maheshwari,Traditional uses of Justicia beddomei,Aruduso,Pharmatuor pharmacy infopedia
- 7. Ubonwan Pongprayon Claeson ,Justicia beddomei: A criticalreview ofethnopharmocological and toxicological data,Jou. of Ethnopharmacology- vol 72,Issue1-2,Sep-2000,Pg 1-20
- 8. BikadiZ., HazaiE. Application of the PM6 semi-empirical method to modeling proteins enhances close accuracy of AutoDock. J. Cheminf. 1, 15 (2009).
- 9. Journal of Computational Chemistry 17 (5-6), 490-519 (1998). Halgren. T.A.Merck molecular force field. I. Basis, form, scope, parametrization, and performance of MMFF94.
- 10. Journal of Computational Chemistry 19 (14), 1639-1662(1998).GMMorris, et al. Automated close using a Lamarckian genetic algorithm and an empirical binding free energy function

