A VIEW ON UNION OF SOME GRAPHS IN GRAPH THEORY

*1 Pandiselvi M , M. Phil Scholar, Department of Mathematics, Bharath University, Chennai. 72
*2 Dr. M. Siva.
Assistant Professor and Head, Department of Mathematics, Bharath University, Chennai. 72. lakshan212014@gmail.com sivamurthy@gmail.com Address for Correspondence
*1 Pandiselvi M , M. Phil Scholar,
Department of Mathematics, Bharath University, Chennai. 72 *2 Dr. M. Siva.
Assistant Professor and Head, Department of Mathematics, Bharath University, Chennai. 72.
lakshan212014@gmail.com sivamurthy@gmail.com

Abstract

In graph theory, a branch of mathematics the disjoint union of graphs is an operation that combines two or more graphs to form a larger graph. Eulerian to the Swiss mathematician Leonhard Euler, who invents graph theory in the $18^{\text {th }}$ century. The disjoint union of two sets and is binary operator that combines all distinct element of a pair of given sets, while retaining the original set membership as a distinguishing characteristic of the union set.

KEYWORDS:

Union, pair sums union, edges, vertices, ladder, vertex, etc.,

Introduction:

Graph theoretical concepts are widely used to study and model various applications, in different areas. They include, study of molecules, construction of bonds in chemistry and the study of atoms. Similarly, graph theory is used in sociology for example to measure actors prestige or to explore diffusion mechanisms.

Definition: The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with
$\mathrm{V}\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)=\mathrm{V}\left(\mathrm{G}_{1}\right) \cup \mathrm{V}\left(\mathrm{G}_{2}\right)$ and $\mathrm{E}\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)=\mathrm{E}\left(\mathrm{G}_{1}\right) \cup \mathrm{E}\left(\mathrm{G}_{2}\right)$
Definition: If P_{n} denotes a path on n vertices, the graph $L_{n}=P_{2} \times P_{n}$ is called a ladder .
Definition: The graph $C_{n} \hat{O} \mathrm{~K}_{1, \mathrm{~m}}$ is obtained from C_{n} and $\mathrm{K}_{1, \mathrm{~m}}$ by identifying any vertex of C_{n} and central vertex of $K_{1, m}$.

Theorem

$\mathrm{K}_{1, \mathrm{~m}} \cup \mathrm{~K}_{1, \mathrm{n}}$ is a pair sum graph.

Proof

Let $\mathrm{x}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{m}}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}}$ and

$$
E\left(K_{1}, \mathrm{~m}\right)=\left\{\mathrm{xx}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq \mathrm{m}\right\} .
$$

Let $\mathrm{y}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{yn}$ be the vertices of $\mathrm{K}_{1, \mathrm{n}}$ and

$$
E\left(K_{1, n}\right)=\left\{y_{j}: 1 \leq j \leq m\right\} .
$$

when $\mathrm{n}=\mathrm{m}$.
consider $\mathrm{g}(\mathrm{x})=1$

$$
\begin{array}{lr}
g\left(x_{j}\right)=j+1 & 1 \leq j \leq n \\
g(y)=-1 & \\
g\left(y_{j}\right)=-(j+1) \quad 1 \leq j \leq n
\end{array}
$$

when $\mathrm{n}>\mathrm{m}$
consider $\mathrm{g}(\mathrm{x})=1$

$$
\begin{aligned}
& g\left(x_{j}\right)=j+1 \quad 1 \leq j \leq m \\
& g(y)=-1 \\
& g\left(y_{j}\right)=-(j+1) \quad 1 \leq j \leq m \\
& g\left(y_{m+2 j-1}\right)=-(m+1+j) \quad 1 \leq j \leq \frac{n-m}{2} \quad \text { if } n-m \text { is even or }
\end{aligned}
$$

$$
1 \leq \mathrm{j} \leq \frac{n-m-1}{2} \quad \text { if } \mathrm{n}-\mathrm{m} \text { is odd }
$$

$$
g\left(y_{m+2 j}\right)=m+j+3
$$

$$
1 \leq \mathrm{j} \leq \frac{n-m}{2} \quad \text { if } \mathrm{n}-\mathrm{m} \text { is even or }
$$

$$
1 \leq \mathrm{j} \leq \frac{n-m-1}{2} \quad \text { if } \mathrm{n}-\mathrm{m} \text { is odd }
$$

Then g is a pair sum labeling.

Theorem

$\mathrm{P}_{\mathrm{n}} \cup \mathrm{K}_{1, \mathrm{~m}}$ is a pair sum graph.

Proof

Let $x_{1}, x_{2}, \ldots x_{n}$ be the path P_{n}.Let $V\left(K_{1, m}\right)=\left\{y_{j}, y_{j}: 1 \leq j \leq m\right\}$ and

$$
E\left(\mathrm{~K}_{1, \mathrm{~m}}\right)=\left\{\mathrm{yy}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq \mathrm{m}\right\} .
$$

When $\mathrm{n}=\mathrm{m}$.

$$
\begin{aligned}
\text { Consider } & g(x)=1, \\
g(y)=-1, & 1 \leq \mathrm{j} \leq \mathrm{n}, \\
\mathrm{~g}\left(\mathrm{y}_{\mathrm{j}}\right)=-2 \mathrm{j}, & 1 \leq \mathrm{j} \leq \mathrm{n},
\end{aligned}
$$

when $m>n$.
consider

$$
\begin{array}{ll}
g\left(x_{j}\right)=\mathrm{j}, & 1 \leq \mathrm{j} \leq \mathrm{n}, \\
\mathrm{~g}(\mathrm{y})=-1, & \\
\mathrm{~g}\left(\mathrm{y}_{\mathrm{j}}\right)=-2 \mathrm{j}, & 1 \leq \mathrm{j} \leq \mathrm{n}-1 \\
\mathrm{~g}\left(\mathrm{y}_{\mathrm{m}+2 \mathrm{j}-1}\right)=2 \mathrm{n}+\mathrm{j}, & 1 \leq \mathrm{j} \leq \frac{m-n+1}{2} \quad \text { if } \mathrm{m}-\mathrm{n} \text { is odd or } \\
& 1 \leq \mathrm{j} \leq \frac{m-n}{2} \quad \text { if } m-n \text { is even, } \\
\mathrm{g}\left(\mathrm{y}_{\mathrm{n}+2 \mathrm{j}-2}\right)=-(2 \mathrm{n}+\mathrm{j}-2) & 1 \leq \mathrm{j} \leq \frac{m-n+1}{2} \quad \text { if } \mathrm{m}-\mathrm{n} \text { is odd or } \\
& 1 \leq \mathrm{j} \leq \frac{m-n}{2}+1 \text { if } \mathrm{m}-\mathrm{n} \text { is even }
\end{array}
$$

Then g is a pair sum labeling.

Theorem

If $\mathrm{n}=\mathrm{m}$, then $\mathrm{C}_{\mathrm{n}} \cup \mathrm{C}_{\mathrm{m}}$ is a pair sum graph.

Proof

Let $x_{1} x_{2}, \ldots x_{m} x_{1}$ be the first copy of the cycle in $C_{m} \cup C_{m}$ and $y_{1} y_{2} \ldots y_{m} y_{1}$ be the second copy of the cycle in $\mathrm{C}_{\mathrm{m}} \cup \mathrm{C}_{\mathrm{m}}$.

When $\mathrm{n}=\mathrm{m}=4 \mathrm{k}$.

Consider

$$
\begin{array}{cr}
g\left(x_{j}\right)=j, & 1 \leq j \leq 2 k-1 \\
g\left(x_{2 k}\right)=2 k+1, & 1 \leq j \leq 2 k-1, \\
g\left(x_{2 k+j}\right)=-j, & 1 \leq j \leq 2 k, \\
g\left(x_{m}\right)=-2 k-1, & \\
g\left(y_{j}\right)=2 k+2 j, & 1 \leq j \leq 2 k
\end{array}
$$

When $\quad n=m=4 k+2$

Consider

$$
\begin{array}{ll}
g\left(x_{j}\right)=j, & 1 \leq j \leq 2 k+1 \\
g\left(x_{2 k+1+j}\right)=-j & 1 \leq j \leq 2 k+1 \\
g\left(y_{j}\right)=2 k+2 j, & 1 \leq j \leq 2 k+1 \\
g\left(y_{2 k+1+j}\right)=-2 k-2 j, & 1 \leq j \leq 2 k+1
\end{array}
$$

when $\mathrm{n}=\mathrm{m}=2 \mathrm{k}+1$.
$g\left(x_{j}\right)=-j$ and $g\left(y_{j}\right)=j$ we have a pair sum labeling.

Theorem

If $m \leq 4$, then $n K_{m}$ is a pair sum graph.

Proof

Obviously $\mathrm{m}=1$,the result is true.
Case 1: $\mathrm{m}=2$.
Assign the label \mathbf{j} and $\mathrm{j}+1$ to the vertices of $\mathbf{j}^{\mathbf{t h}}$ copy of K_{2} for all odd j . For even values of \mathfrak{j}, label the vertices of the $\mathbf{j}^{\text {th }}$ copy of K_{2} by $\mathbf{j}+1$ and $-\mathbf{j}$.

Case 2: $\mathrm{m}=3$.
Subcase1 m is even.
Label the vertices of first $\mathrm{n} / 2$ copies by $3 \mathrm{j}-2,3 \mathrm{j}-1,3 \mathrm{j}(1 \leq \mathrm{j} \leq \mathrm{n} / 2)$. Remaining $\mathrm{n} / 2$ copies are labeled by $-3 \mathrm{j}+2,-3 \mathrm{j}+1,-3 \mathrm{j}$.

Subcase 2 n is odd.
Label the vertices of first $(n-1)$ copies as in Subcase (a). In the last copy label the vertices by $\frac{3(n-1)}{2}+1, \frac{-3(n-1)}{2}-2, \frac{3(m-1)}{2}+3$ respectively.

Theorem

Any triangular snake T_{m} is a pair sum graph.

Proof

Let $\mathrm{V}\left(\mathrm{T}_{\mathrm{m}}\right)=\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{m}+1,1 \leq \mathrm{j} \leq \mathrm{m}\right\}$,
$\mathrm{E}\left(\mathrm{T}_{\mathrm{m}}\right)=\left\{\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}+1, \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}, \mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}+1}: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{m}-1\right\}$.

The proof consider three cases
Case1: m=4n-1
Define

$$
\begin{array}{ll}
g\left(x_{j}\right)=2 j-1, \quad 1 \leq j \leq 2 n, \\
g\left(x_{2 n+j}\right)=-2 j+1, & 1 \leq j \leq 2 n, \\
g\left(y_{j}\right)=2 j, \quad 1 \leq j \leq 2 n-1, \\
g\left(y_{2 n}\right)=-8 n+3, \\
g\left(y_{2 n+j}\right)=-2 j, \quad & \\
\end{array}
$$

Case2: $\mathrm{m}=4 \mathrm{n}+1$
Define

$$
\begin{array}{ll}
g\left(x_{i}\right)=-8 n-3+2(j-1), & 1 \leq j \leq 2 n+1, \\
g\left(x_{2 n+1+j}\right)=8 n+3-2(j-1), & 1 \leq j \leq 2 n+1, \\
g\left(y_{j}\right)=-2+2(j-1), & 1 \leq j \leq 2 n \\
g\left(y_{2 n+1}\right)=3, & \\
g\left(y_{2 n+j+1}\right)=8 n+2-2(j-1), & 1 \leq j \leq 2 n .
\end{array}
$$

Case $3 \mathrm{~m}=2 \mathrm{n}$

Define

$$
\begin{array}{ll}
g\left(x_{n+1}\right)=1, \\
g\left(x_{n+1+j}\right)=2 j, & 1 \leq j \leq n, \\
g\left(x_{n+1-j}\right)=-2 j, & 1 \leq j \leq n \\
g\left(y_{n}\right)=3, \\
g\left(y_{n+1}\right)=-5, \\
g\left(y_{n+1+j}\right)=5+2 j, & 1 \leq j \leq n-1, \\
g\left(y_{n-j}\right)=-(5+2 j), & 1 \leq j \leq n-1 .
\end{array}
$$

Clearly T_{m} is a pair sum labeling.

Theorem

The crown $\mathrm{C}_{\mathrm{m}} \odot \mathrm{K}_{1}$ is a pair sum graph.

Proof

Let C_{m} be the cycle given by $\mathrm{x}_{1} \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}} \mathrm{x}_{1}$ and let $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{m}}$ be the pendent vertices adjacent to $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}$ respectively.

Case1: m is even.
Subcase(a): m=4n.

Define

$$
\begin{array}{ll}
g\left(x_{j}\right)=2 j-1, & 1 \leq j \leq 2 n \\
g\left(x_{2 n+j}\right)=-2 j+1, & 1 \leq j \leq 2 n, \\
g\left(y_{j}\right)=4 n+(2 j-1), & 1 \leq j \leq 2 n, \\
g\left(y_{2 n+j}\right)=-(4 n+2 j-1), & 1 \leq j \leq 2
\end{array}
$$

Subcase(b) $\mathrm{m}=4 \mathrm{n}+2$.
Obviously g is a pair sum labeling.

References

[1] I. Cahit, Recent results and open problems on cordial graphs, in R. Bodediek, contemporary methods in Graph Theory, Wissenchaftsverlag, Mannheim, 1990,pp, 209-230.
[2] J.A. Gallian A dynamic survey of graph labeling, Electronic J. Combin.
[3] K.M. Koh, D.G. Rogers, on graph theory graphs V: Unions of graph with one vertex in common, Nantha Math.
[4]G. Sethuraman. R. Dhavamani, Graceful numbering of an edge-gluing of shell graphs, Discrete Math.

