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 Abstract: 

In many applications, modelling is a crucial step. The process of developing a mathematical 

description for a particular natural event is referred to as modelling (also called system). Price 

prediction in banking [85], channel estimation in communication systems [88], and controller 

design in industrial processes [80] are some examples.Modeling may be divided into two 

categories. The first method considers modelling a natural event using physical rules (for example, 

modelling an electrical circuit using Kirchhoff's current and voltage laws). The second method is 

to describe the natural phenomena as a black box model (or a grey box model if some physical 

understanding is taken into consideration) and identify the model using input-output data from a 

system experiment (e.g., provide a voltage excitation to an electrical circuit, and measure the 

current to obtain a model for the equivalent impedance). The second method, often referred to as 

system identification, is the focus of this thesis.The input sequence we give to excite the system is 
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one of the most important aspects of system identification. Because system identification requires 

input-output data, it's important to create an input excitation that, in certain ways, optimises the 

information in the experiment (e.g., optimising a cost function related to the intended model 

application). Input design refers to the process of creating an input sequence for system 

identification, which is the subject of this thesis.The words input design and experiment design are 

differentiated. The specification of input and output signals, measurement instants, modified 

signals, and how to modify them are all options in experiment design (which is the focus of input 

design). Signal conditioning is also included (e.g., the choice of presampling filters [59, Paper 

13]). 

INTRODUCTION  

The link between stationary processes with finite alphabet and memory and de Bruijn 

graphs was explored in Paper 2. The findings will now be used to create techniques for creating 

nonlinear model input sequences based on the findings. 

The primary problem in constructing input sequences to detect nonlinear models, as stated 

in Paper 1, is that frequency domain methods cannot be used. As a consequence, most input design 

findings for linear models cannot be applied to nonlinear models. Furthermore, most current input 

design findings are incapable of dealing with amplitude limitations, which may occur owing to 

physical or safety concerns. 

This paper presents a method for identifying nonlinear output-error (NOE) models by 

constructing input sequences. The approach treats the creation of an input sequence as the 

realisation of a stationary process with limited memory and alphabet. Maximizing a scalar cost 

function of the Fisher information matrix yields the best stationary process. We use de Bruijn 

graphs to derive the probability measures associated with the extreme points after parameterizing 

the set of stationary processes in terms of its extreme points, and then estimate the related Fisher 

information matrix for each extreme point. As a result, the issue becomes convex for nonlinear 

models as well. Numerical examples demonstrate that the approach described in this paper is 

compatible with previous findings in the literature and that it is a viable option for constructing 

nonlinear model input sequences. 
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The results in [54] and [6, 7] may be viewed as an extension of the findings in this paper. 

The major difference between [6, 7] and [6, 7] is that instead of simply optimising over the 

transition probabilities, we optimise over the stationary pmf associated with the Markov chain. 

This method produces a convex problem (which cannot be solved in [6, 7]), which necessitates the 

use of optimization methods that guarantee local optima. 

 

Figure 3.1: Block diagram of a (possibly nonlinear) system. 

to find work). [54] discusses a similar method to the one given in this paper, although it is 

limited to nonlinear FIR systems. The input design issue in [54] is addressed in terms of a 

limited-length input realisation by using the finite memory feature of nonlinear FIR models. 

However, since the models will usually rely on the whole previous input sequence, the findings 

in [54] cannot be used to construct input sequences for identification of more generic nonlinear 

output-error models. In this vein, the current paper broadens the study to encompass nonlinear 

FIR systems as well as more generic nonlinear model structures. 

3.1 Formulation of the Problem 

Consider the time invariant single input, single output (SISO) system shown in Figure 

3.1. G0 is a dynamical system (potentially nonlinear) in this case. 

), defined for t ≥ 1  

   (3.1)  

where {et} is white noise sequence with zero mean and finite variance λe, ut ∈ R is the input, xt ∈ 
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Rnx are the internal states of G0 with initial condition µ ∈ Rnx , and yt ∈ R is the measured output. 

We assume that we have a model structure G, defined for any θ ∈ Θ ⊂ Rnθ as  

  (3.2)  

We assume that there exists a θ0 ∈ Θ such that G(ut; θ0) = G0(ut) [59], i.e., there is no 

undermodelling. Notice that the noise, et, is assumed to enter only at the output. To continue, we 

introduce the following definition:  

Definition 3.1 Consider a bounded signal {ut}, |ut| ≤ K (K > 0), and a non linear system yt 

= G0(ut). We say that G0 is exponentially stable if and only if there are constants C > 0 (depending 

possibly on K), 0 < δ < 1, such that for all t, s ∈ Z,  

|G0(ut) − G0(u
s
t)| < Cδt−s,       (3.3) 

where  

    .(3.4)  

We notice that Definition 3.1 differs from that given by [58] since it considers deterministic 

systems, and it is not defined in terms of moments of order 4.  

The objective in this paper is to design an input signal u1:nseq = (u1, . . . , unseq ) as a realization 

of a stationary process, such that the system (3.1) can be estimated with maximum accuracy as 

defined by a scalar function of the Fisher information matrix Ie
F[59]. Ie

Fcan be computed using 

Lemma 1.1 as1  

                     (3.5) 
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where  

 

and θ, θ0 ∈ Θ. Since we are interested in computing u1:nseq as a realization from a stationary 

process, we need to quantify the Fisher information matrix in terms of its expected value with 

respect to u1:nseq. We define the result of this expected value as the per-sample Fisher information 

matrix, which is computed as  

(3.7)  

Equation (3.6b) does not depend on the noise realization. Therefore, we can rewrite (3.7)as  

 (3.8)  

We note that (3.8) depends on P(u1:nseq ). Therefore, the input design problem we will 

consider is to find a cdf, Popt(unseq ), which maximizes a scalar function of (3.8). We define this 

function as h: Rn
θ×nθ → R. As it is customary in input design [33, 45, 59], h is assumed to be a 

concave, nondecreasing, matrix function [5, pp. 108]. The assumption of h being nondecreasing 

function is to guarantee that, for any two matrices X and Y in the positive semidefinite cone, we 

have h(X) ≥ h(Y ) when X   Y . Several choices of h have been proposed in the literature [74]. In 

this paper, we leave the selection of h open to the user.  

Since P(u1:nseq ) has to be a stationary cdf, the optimization must be constrained to the set  
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  (3.9)  

As mentioned in Paper 2, the last condition in (3.9) guarantees that P ∈ Pnseq is the projection of 

the cdf of a stationary sequence [100].  

Based on Definition 3.1, we impose the following assumption over ψθ0 t(ut)ψ
θ0t(ut)⊤.  

 Input design via graph theory  

We must parameterize the set PC in a computationally tractable way to solve Problem 3.2. 

To this purpose, we'll characterise each element in PC as a convex combination of its extreme 

points, as described in Section 2.2. In this part, we use the notation established in Section 2.2 to 

represent the set of PC's extreme points, which we refer to as VPC. 

We know how to calculate the probability measures associated with the elements thanks to 

Theorem 2.1 and Lemma 2.2. In the VPC. Indeed, Theorem 2.1 says that the prime cycles in the 

de Bruijn graph GCnm correspond one-to-one to the elements in VP (the set of Cnm's extreme 

points), with a uniform distribution whose support equals the prime cycle's elements. Furthermore, 

Lemma 2.2 says that the de Bruijn graph GCnm's prime cycles are generated from the de Bruijn 

graph GCnm1's basic cycles. As a result, the Fisher information matrix corresponding to the i-th 

prime cycle and element wi VPC may be defined as 

  (3.16)  
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for all i ∈ {1, . . . , nV }. Notice that each I(i)
Fis associated with the i-th prime cycle. since it 

requires the computation of expected values of nonlinear functions of ui
t. Therefore, a numerical 

approximation of (3.16) is needed. To this end, instead of approximating IF
(i) as an average over 

different realizations of the input sequence u1:nseq, we consider an approximation of IF
(i)an average 

over different realization of the input sequence   

 (3.17)  

where Nsim is sufficiently large. The approximation (3.17) converges to IF
(i)  

as Nsim → ∞ since ψt
θ0 (ut)

T satisfies Assumption 3.1 (see Appendix B for a proof of this 

statement). The approximation error incurred when (3.17) is employed to compute IF
(i) is of 

order  𝛿𝜑
𝑁𝑠𝑖𝑚 

 Reducible Markov chains  

When the optimization (3.19) is solved, it might occur that the resulting popt is associated 

to a reducible Markov chain. The last means that there exists at least two sets of vertices in the 

Markov chain, such that each set of vertices cannot be accessed from the others. This is an issue 

of the proposed approach, since Algorithm 2.1 cannot be employed to generate samples from popt 

if it is the pmf of a reducible Markov chain.  

One possibility to overcome this issue is to perturb the optimal pmf popt in order to achieve 

an irreducible Markov chain, and then use Algorithm 2.1 to generate samples from the perturbed 

pmf. In this case, the samples will be distributed according to a suboptimal pmf. The problem of 

optimal pmfs popt resulting in reducible Markov chains is a topic for future research.  

Numerical examples  

In this section, we will introduce numerical examples to illustrate the proposed input design 

method.  
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Example 3.1 (Input design for nonlinear FIR models) In this example we will solve the 

input design problem for the system in Figure 3.1 in page 38, with  

G0(ut) = G1(q, θ) ut + G2(q, θ) u2
t   (3.22) 

 

Figure 3.2: Plot with the stationary probabilities for the optimal input signal of Example 

3.1. The radius of each disc is proportional to the probability of the state (ut, ut−1).  

where  

G1(q, θ) = θ1 + θ2 q
−1,    (3.23)  

G2(q, θ) = θ3 + θ4 q
−1.    (3.24)  

We assume that {et} is Gaussian white noise with variance λe = 1. This system has been 

introduced as an example in [54].  

We will solve Problem 3.2 by considering h(·) = log det(·), and a ternary se quence (nC = 

3) of length nm = 2. For this example, we take C = {−1, 0, 1}. 

 To solve (3.19)-(3.20) we consider Nsim = 5 ·103in (3.17). The implementation of (3.19)-

(3.20) was made in Matlab using the cvx toolbox [35]. 
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 The simulation results give an optimal cost2log det(Iapp F) = −1.717. Figure 3.2 shows the 

optimal stationary probabilities for each state (ut, ut−1) (cf. Figure 4(a) in [54]). The results 

presented here show that the proposed method is consistent with the results in [54].  

Example 3.1 shows that this method is equivalent to the method introduced in [54] when 

G0 has a nonlinear FIR-type structure.  

The results in this paper can also be employed for linear systems when ampli tude 

constraints are considered in the input sequence by forcing ut to belong to a finite alphabet. The 

next example shows an application in that direction.  

Example 3.2 (Input design with amplitude constraints) In this example we con sider the 

mass-spring-damper system introduced in [7]. The input, u, is the force applied to the mass and 

the output, y, is the mass position. The continuous-time system is described by the transfer function  

   (3.25)  

with m = 100 [Kg], k = 10 [N/m], and c = 6.3246 [Ns/m]. This choice results in the natural 

frequency ωn = 0.3162 [rad/s] and damping ξ = 0.1. The noise {et} is white with zero mean and 

variance λe = 10−4. The system (3.25) is sampled by using a zero-order-hold with sampling period 

Ts = 1 [s]. This gives the discrete-time system  

  (3.26)  

As a model, we define  

  (3.27)  
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where  

θ =[ θ1 θ2 θ3 θ4]⊤.       (3.28)  

We will solve Problem 3.2 for two cost functions: h(·) = − tr{(·)−1} and h(·) = log det(·), subject to 

a binary sequence (nC = 2) of length nm = 2. In this example, we define C = {−1, 1}, and Nsim = 5 · 

103.  

The solution of Problem 3.2 for this example gives tr{(Iapp )-1 

= 0.1108 and log det(IF
app) = 28.22. Figure 3.3 and 3.4 present the stationary probabilities of the 

optimal input signal for both cost functions. We can see that the stationary probabilities depend 

on the cost function h. However, both cost functions assign higher stationary probabilities to the 

states (−1, −1) and (1, 1).  

We can compare the performance of our approach with the method introduced in [7]. For 

this purpose, we generate an input sequence of length Nsim by running the Markov chain associated 

to the stationary distribution in Figure 3.3, and the 4-states Markov chain presented in [7]. To 

guarantee that the input is a realization of a stationary process, we discard the first 106realizations 

of the Markov chain. The results for the sampled information matrix are tr{IF
−1}  

=1.8233.10−4for thefour states markov chain presented in [7], and tr{LF
-1} 

= 1.6525 · 10−4for our method (we note that our results are consistent with those reported in [7], 

since the scaling factor Nsim is not considered here). Therefore, based on the variance of the 

parameter estimates, we conclude that the approach in this paper gives better results for the 

example introduced in [7].  

To have an idea of the computation time required for this example, the opti mization was 

solved in a laptop Dell Latitude E6430, equipped with Intel Core i7 
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Figure 3.3: Plot with the stationary probabilities for the optimal input signal in Example 

3.2 as in Figure 3.2. h(·) = − tr{(·)−1}.  

 

Figure 3.4: Plot with the stationary probabilities for the optimal input signal in Example 3.2 as in 

Figure 3.2. h(·) = log det(·). 

2.6 [GHz] processor, and 8 [Gb] of RAM memory. The time required for the com putation 

of elementary cycles to the computation of stationary probabilities is 1.9 seconds. 

The results presented in the previous examples show that the method intro duced in this 

paper retrieves (or improves) the results in the literature. The next examples show an application 

of the input design method to a model structure not covered by existing techniques.  
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OPTIMAL INPUT DESIGN FOR NONLINEAR STATE SPACE MODELS  

A novel technique for input design for nonlinear model identification was presented in 

Paper 3. The topic in the paper was limited to nonlinear output error models. The model structure 

assumption was included to make the Fisher information matrix approximation, which is based on 

numerical approximations, easier. The approach in Paper 3 does not, however, address the situation 

when the noise process also influences the model's internal states. The approximation of the Fisher 

information matrix provided in Paper 3 is no longer applicable in these models. To apply the 

findings of Paper 3 to more broad nonlinear model structures, additional approximation techniques 

must be explored. 

We extend the input design technique presented in Paper 3 to nonlinear state space models 

in this paper. We utilise a graph theoretical method to construct an input sequence as a realisation 

of a stationary process that maximises the Fisher information matrix's scalar cost function, as we 

did in Paper 3. We utilise particle techniques to get the necessary estimates as the sample 

covariance matrix of the scoring function to estimate the Fisher information matrices for the 

extreme points in the set of stationary processes. The optimization is then performed for several 

realisations of the score function's sample covariance matrix, and the optimum pdf is derived as 

the sample mean of the solutions found for the various data realisations. The technique is shown 

to be an appealing strategy for designing input sequences for the identification of nonlinear state 

space models using numerical examples. 

Formulation of the Problem 

This section 1 introduces a nonlinear state space model extension of the optimum input 

design formulation given in Paper 3. The discussion in this section is similar to that in Section 3.1, 

with the exception that we construct the issue in this section to include nonlinear state space 

models. 

The goal, as in Paper 3, is to create an input signal u1:nseq = (u1,..., unseq) that realises a 

stationary process. This is done in order to identify a state space model (SSM) as accurately as 
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possible, as described by a scalar function of the Fisher information matrix IF [59]. The states x0:T 

= (x0,..., xT), inputs u1:T, and measurements y1:T of an SSM are provided by 

x0 ∼ µ (x0),       (4.1a)  

xt|xt−1 ∼ fθ (xt | xt−1, ut−1),     (4.1b)  

yt|xt ∼ gθ (yt | xt, ut).     (4.1c)  

Here, fθ (·) and gθ (·) denote known probability distributions parametrized by θ ∈ Θ ⊂ Rnθ 

. In the sequel, we make the rather restrictive albeit standard assumption that there exists θ0 ∈ Θ 

such that the model (4.1) describes the system to be identified when θ = θ0, i.e., there is no 

undermodeling. This assumption is necessary in order to quantify the information retrieved from 

the experiment as a function of the Fisher information matrix.  

We notice that we can write the joint distribution of states and measurements for (4.1) as  

 

  (4.2)  

This quantity is used in the sequel for estimating IF by  

IF = E
 S(θ0)S⊤(θ0)

 ,                  (4.3a)  

S(θ0) = ∇θ log pθ(y1:nseq )
  θ=θ0,               (4.3b)  

where pθ(y1:nseq ) and S(θ) denote the likelihood function and the score function, 

respectively. Note that the expected value in (4.3a) is with respect to the probability distribution 

pθ(x0:T |y1:T ) and the realizations of u1:nseq.  

We note that (4.3a) depends on the cumulative distribution function of u1:nseq, Pu(u1:nseq ). 

Therefore, the input design problem is to find a cdf 𝑃𝑢
𝑜𝑝𝑡

(u1:nseq)which maximizes a scalar function 
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of (4.3a). We define this scalar function as h : Rn
θ×nθ → R. To obtain the desired results, h must 

be a concave, nondecreas ing, matrix function [5, pp. 108] (cf. Section 3.1). In this paper we leave 

the selection of h to the user.  

Algorithm 4.1 Sequential importance sampling  
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Resampling  

We have seen that IS (and therefore SIS) provides estimates whose variance in creases with 

t. Resampling techniques are a key ingredient of SMC methods which (partially) solve this 

problem in some important scenarios.  

Resampling is an intuitive idea with major practical and theoretical benefits. We consider 

first an IS approximation 𝑝̂(x1:T ) of the target distribution p(x1:T ). This approximation is based on 

weighted samples from pI(x1:T ), and does not pro vide samples approximately distributed 

according to p(x1:T ). To obtain approxi mate samples from p(x1:T ), we can simply draw samples 

from its IS approximation 𝑝̂(x1:T ), where 𝑝̂(x1:T ) is defined in (4.17), with normalized weights  

This operation is called resampling as it corresponds to sampling from an approximation 

ˆp(x1:T ) which was itself obtained by sampling. If we are interested in obtaining N samples from 

ˆp(x1:T ), then we can resample N times from ˆp(x1:T ): This is equivalent to associating a number of 

off spring 𝑁𝑇
(𝑖)

with each sample 𝑥1:𝑇
(𝑖)

 in such a way that 𝑁𝑇
(1:𝑁)

:=(𝑁𝑇
(1)
, …… . 𝑁𝑇

(𝑁)
) follow a 

multinomial distribution with parameter vector (N, 𝑤𝑇
(1:𝑁)

and associating a weight of 1/N with 

each offspring. Thus, we approximate 𝑝̂(x1:T ) by the 

 CONCLUSION 

The concepts of graph theory and stationary processes used in the thesis were presented in 

this paper 2. We showed how to use de Bruijn graphs to represent a collection of stable processes 

with limited memory. It was demonstrated that the convex hull of the probability measures 

associated with the prime cycles of the analogous de Bruijn graph may be represented as the set of 

stationary processes with finite memory and finite alphabet. We're looking for realisations from a 

certain pmf in the set of stationary processes. We treat the samples as the output of a Markov chain 

with stationary distribution provided by the desired pmf to get a realisation with the desired 

distribution. This paper presented a method for constructing the related transition probability 

matrix, resulting in a Markov chain with the required pmf as stationary distribution. Nonetheless, 

the method does not ensure that the resultant transition probability matrix has the optimum mixing 
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time; however, numerical optimization techniques may be used to enhance this feature, which will 

be addressed in future work. 

A novel input design method for identifying nonlinear outputerror models is presented in 

this paper 3. The approach treats the creation of an input sequence as a realisation of a stationary 

process achieved by maximising the information matrix's scalar cost function. We parameterize 

the set of stationary processes in terms of convex combinations of the set's extreme points to 

produce a computationally tractable issue. The probability measures associated with the extreme 

points are calculated as the set of prime cycles associated with the corresponding de Bruijn graph, 

provided the stationary process has finite memory and alphabet. As a result, each member in the 

set of stationary processes' information matrix may be calculated as a convex combination of the 

information matrices acquired for each extreme point. The information matrices for each extreme 

point are generated using numerical approximations due to the complexity of nonlinear model 

architectures. The primary benefit of this method is that, even for nonlinear model structures, the 

input design issue becomes convex. 

We addressed an expansion of the input design technique described in Paper 3 in this paper 

4. The expansion incorporates a nonlinear state space description as a more generic model 

structure. We construct the input sequence by maximising a scalar cost function of the Fisher 

information matrix over the set of stationary processes with finite memory and finite alphabet, as 

described in Paper 3. The calculation of the Fisher information matrix for the collection of basis 

inputs is the most challenging part of this paper. The Monte Carlo approximation presented in 

Paper 3 cannot be used here because we assume a more broad nonlinear model structure. We utilise 

particle techniques to estimate the Fisher information matrices for the collection of basis inputs to 

solve this problem. The resultant optimization is repeated many times across various realisations, 

and the ultimate result is the sample mean over the different realisations, since the technique is 

based on numerical approximations. The suggested method may be used to construct input 

sequences to discover nonlinear state space models, as shown by numerical examples. 

The computational cost of this method is, as one would assume, linked not only to the 

calculation of the basic inputs, but also to the number of particles and the length of the input used 
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to estimate the score function. The decrease of the computational complexity associated with the 

estimate of the score function will be the focus of future research in this area. 

We offer an application of the input design approach described in previous papers in this 

fifth paper. The aim is to create an input sequence that is a realisation of a stationary process, with 

the goal of getting the most information out of the experiment by applying the input sequence to a 

system with quantized output. Because the output measurements are quantized, the calculation of 

the Fisher information matrix becomes problematic when applying the suggested method on these 

systems. To address this problem, this paper presents a Fisher information matrix estimate based 

on Fisher's identification. Numerical approximations are used to estimate the Fisher information 

matrices associated with the probability measures characterising the set of stationary processes, 

which are then used to calculate the estimate. The numerical example shows how the suggested 

technique may be used to create input sequences for quantized output systems. More complicated 

model structures will be considered in future research, necessitating the development of new 

expressions to approximate the Fisher information matrix. 
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