A Study on odd graceful graph labelling theory

${ }^{* 1}$ SATHYA A , MPhil Scholar, Department of Mathematics Bharath Institute of Higher Education and Research, Chennai,-73, India.

${ }^{* 2}$ Ms. W. Felicia Rajam , Associate Professor, Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai,-73, India.
asathya12@gmail.com shiafelcia@gmail.com

Address for Correspondence

${ }^{* 1}$ SATHYA A , MPhil Scholar, Department of Mathematics Bharath Institute of Higher Education and Research, Chennai,-73, India.
${ }^{*}$ 2 Ms. W. Felicia Rajam , Associate Professor, Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai,-73, India.

asathya12@gmail.com

shiafelcia@gmail.com

Abstract

Graph labeling one mainly rising areas mathematics which project integers vertices edges both subject definite setting. provide useful mock-up broad assortment application such as data safety, communications net-works, X-ray, radar, circuit design data base organization.

Keywords : Labeling, communication, graph, edges, Magic Labeling etc.,

Introduction:

The concept of odd graceful graphs was introduced by Gnanajothi [11]. In this chapter we prove that several classes of graphs such as $r C_{4 k}(k>1), C_{n} \cup K_{1, m}$ where $n=$ $4 k, k>1$ and m is any positive integer, and $C_{n} \cup P_{m}$ where $n=2 k$ are odd graceful.

We also prove that the graph obtained hy identifying a vertex of an even cycle with the centre or with a pendant vertex of a star is odd graceful and the graph obtained by joining a vertex of an even cycle to a pendant vertex of a star is odd graceful. We also construct several families of odd graceful graphs

Theorem 1.1 Let G be the graph obtained by identifying a pendant vertex of P_{m} with a vertex of C_{n} where $n=4 k$. Then G is odd graceful.

Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{4 k}, v_{1}, v_{2}, \ldots, v_{m}\right\} \quad C_{4 k}=\left(u_{1}, u_{2}, \ldots, u_{4 k}, u_{1}\right)$ and $P_{m}=$ $\left(u_{4 k}, v_{1}, v_{2}, \ldots, v_{m}\right)$

Define $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ as follows.

$$
f\left(u_{i}\right)= \begin{cases}i-1 & \text { if } i \text { is odd and } i \leq 2 k-1 \\ i+1 & \text { if } i \text { is odd and } 2 k+1 \leq i \leq 4 k-1 \\ 2 q-i+1 & \text { if } i \text { is even }\end{cases}
$$

The induced edge labeling f^{*} is given by
$f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}2 q-(2 i-1) & \text { if } 1 \leq i \leq 2 k-1 \\ 2 q-(2 i+1) & \text { if } 2 k \leq i \leq 4 k-1\end{cases}$
$f^{*}\left(u_{n} u_{1}\right)=2 q-(n-1)$,
$f^{*}\left(v, v_{i+1}\right)=2 q-(2 n+2 i+1)$ if $1 \leq i \leq n-1$
and $f^{*}\left(u_{n} v_{1}\right)=2 q-(2 n+1)$.
The set of edge labels of the cycle C_{n}

$$
\begin{aligned}
=\{2 q-1,2 q-3, & \ldots 2 q-(n-3), 2 q-(n+1), \ldots \\
& 2 q-(2 n-1), 2 q-(n-1)\} .
\end{aligned}
$$

The set of edge labels of the path P_{m}
$=\{2 q-(2 n+1), 2 q-(2 n+3), \ldots, 5,3,1\}$
Hence G is odd graceful.

Example 1.2 The odd graceful labeling of the graph G obtained by attaching a pendant vertex of P_{19} to a vertex of C_{12} is given in Figure 4.1

Fig 4.1

Theorem 1.3 The graph G obtained by attaching an even cycle C to each vertex of K_{2} is odd graceful.

Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$
and $E(G)=\left\{u_{1} u_{2}, \ldots, u_{n} u_{1}, u_{1} v_{1}, v_{1} v_{2}, \ldots, v_{n} v_{1}\right\}$
Let $n=2 k$.

Define $f: V \rightarrow\{0,1,2, \ldots, 2 q-1\}$ as follows.
and

If $n=16,20,24, \ldots$

$$
f\left(v_{t}\right)=\left\{\begin{array}{llc}
1 & \text { if } & i=1 \\
4 i+1 & & \text { if } i \text { is odd and } 3 \leq i \leq k-1 \\
4 i-5 & \text { if } & i=k+1 \\
2 q-4 i+5 & & \text { if } i \text { is odd and } k+3 \leq i \leq n-3 \\
7 & \text { if } & i=n-1 \\
4 n-4 & \text { if } & i=2 \\
2 q-4 i+6 & & \text { if } i \text { is even and } 4 \leq i \leq k-2 \\
2 n+6 & & \text { if } i=k \\
4 i+2 & & \text { if } i \text { is even and } k+2 \leq i \leq n-2 \\
4 n-2 & \text { if } & i=n
\end{array}\right.
$$

and,

$$
f\left(u_{i}\right)=\left\{\begin{array}{llc}
0 & \text { if } & i=1 \\
8,20 & \text { if } & i=3,5 \\
4 i+4 & & \text { if } i \text { is odd and } 7 \leq i \leq k-1 \\
2 n+12 & \text { if } & i=k+1 \\
2 q-4 i+12 & \text { if } i & \text { is odd and } k+3 \leq i \leq n-3 \\
14 & \text { if } & i=n-1 \\
2 q-1 & \text { if } & i=2 \\
2 q-5 & \text { if } & i=4 \\
2 q-4 i+15 & & \text { if } i \text { is even and } 6 \leq i \leq k \\
4 i+7 & \text { if } i & \text { is even and } k+2 \leq i \leq n-4 \\
2 q-7 & \text { if } & i=n-2 \\
2 q-3 & \text { if } & i=n
\end{array}\right.
$$

All the odd numbers between 1 and $2 q-1$ appear as edge labels in the above labeling.
Hence G is odd graceful.
Example 1.4 An odd graceful labeling of the graph obtained by attaching a copy of C_{16} to each vertex of K_{2} is given in Figure 4.2.

Fig 1.2

Example 1.5 An odd graceful labeling of the graph obtained by attaching a copy of C_{18} to each vertex of K_{2} is given in Figure 4.3.

Theorem 1.6 Let $G=C_{n} \bigodot^{26} K_{1, n}$ be the graph obtained by identifying a vertex of $C_{n}=$ Fig 4.3
$\left(u_{1}, u_{2}, \ldots, u_{n}, u_{1}\right)$ to the centre of the $\operatorname{star} K_{1, \mathrm{~m}}$-Then G is odd graceful if $m \geq(n-6) / 2$ and n is even.

Proof. Let $n=2 k$ and $m \geq k-3$.
Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{2 k}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and
$E(G)=\left\{u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{t k-1} u_{2 x}, u_{2 k} u_{1}\right\} \cup\left\{u_{1} v_{i} / 1 \leq i \leq m\right\}$
Define $f: V \rightarrow\{0,1,2, \ldots, 2 q-1\}$ as follows.

$$
f\left(u_{i}\right)=\left\{\begin{array}{llc}
i-2 & \text { if } i & \text { is even and } 2 \leq i \leq 2 k-2 \\
i+2 k-4 & \text { if } & i=2 k \\
2 q-i & \text { if } & i \text { is odd }
\end{array}\right.
$$

If $m=k-3, f\left(v_{f}\right)=4 k+2 i-4,1 \leq i \leq m$.
If $m>k-3$,

$$
f\left(v_{t}\right)= \begin{cases}4 k+2 i-4 & \text { if } 1 \leq i \leq k-2 \\ 4 k+2 i-2 & \text { if } i>k-2\end{cases}
$$

Let f " denote the induced edge labeling.
Then $f^{*}\left(u_{i} u_{i 41}\right)=2 q-2 i+1$ if $1 \leq i \leq n-2$,

$$
\begin{aligned}
& f^{*}\left(u_{n-1} u_{n}\right)=2 m-2 k+5 \text { and } \\
& f^{*}\left(u_{n} u_{1}\right)=2 q-4 k+3
\end{aligned}
$$

If $m=k-3$,

$$
f^{*}\left(u_{1} v_{t}\right)=2 q-2 i-4 k+3,1 \leq i \leq m
$$

and if $m>k-3$,

$$
f^{*}\left(u_{1} v_{i}\right)= \begin{cases}2 q-2 i-4 k+3 & \text { if } 1 \leq i \leq k-2 \\ 2 q-2 i-4 k+1 & \text { if } i>k-2\end{cases}
$$

Thus $f^{*}(E(G))=\{1,3, \ldots, 2 q-1\}$ and hence G is odd graceful.
Example 1.7 An odd graceful labeling of $C_{12} \odot K_{1,7}$ is given in Figure 4.4

Fig:1;4
Theorem 1.9 $P_{n} X P_{2}$ is odd graceful where P is a path of length $n-1$.
Proof. Let $G=P_{n} X P_{2}, V(G)=\left\{a_{i}, b / 1 \leq i \leq n\right\}$ and
$E(G)=\left\{a a_{i+1}, b b_{s+1} / 1 \leq i \leq n-1\right\} \cup\left\{a b_{i} / 1 \leq i \leq n\right\}$
Define $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\} b y$
$f\left(a_{i}\right)=\left\{\begin{array}{ll}2 q-2 i-1 & \text { if } i \text { is odd } \\ 4 i-4 & \text { if } i \text { is even }\end{array}\right.$ and $f\left(b_{i}\right)= \begin{cases}2 q-2 i+3 & \text { if } i \text { is even } \\ 4 i-4 & \text { if } i \text { is odd }\end{cases}$
The induced edge labeling f^{*} is given by

$$
\begin{aligned}
& f^{*}\left(a p_{f}\right)=\left\{\begin{array}{lc}
2 q-6 i+3 & \quad \text { if } i \text { is odd and } 1 \leq i<n \\
1 & \text { if } \quad i=n \\
2 q-6 i+7 & \text { if } i \text { is even }
\end{array}\right. \\
& f^{*}\left(a a_{i+1}\right)= \begin{cases}2 q-6 i-1 & \text { if } i \text { is odd } \\
2 q-6 i+1 & \text { if } i \text { is even }\end{cases}
\end{aligned}
$$

$$
\text { and } f^{*}\left(b b_{1+1}\right)= \begin{cases}2 q-6 i+5 & \text { if } i \text { is odd } \\ 2 q-6 i+3 & \text { if } i \text { is even. }\end{cases}
$$

Clearly $f^{*}(E)=\{1,3,5, \ldots, 2 q-1\}$ so that G is odd graceful.
Example 1.5 Odd graceful labeling of $P_{7} X P_{2}$ is given in Figure 4.22.

Fig 1.5

Conclusion:

Labelled graphs useful models variety range applications such as: coding theory crystallography, astronomy, contact system, data base managing limit programming set area. Now days, graph theory-based results using in field of engineering science. Graph labeling is vital part graph theory. Many practical problems based on graph labeling. Methods application problems in communication network, radio astronomy problems etc. Bloom Golomb present graph labelingprms in different applications. Graph labeling well subject mobile Ad hoc networks. The model as connectivity, modeling network and recreation consider. For analyz the issues in the Ad hoc network, it be modelled graph. The model use to analyze the issues as node dense, mobility between nodes link information connecting the nodes.

References

[1] Bondy, J.A., and U.S.R.Murty, Graph Theory with Applications, Macmillan Press Ltd.,

London, (1976).
[2] Douglas B.West, Introduction to Graph Theory, Prentice- Hall of India Private Ltd., New Delhi.
[3] M.C., Algorithmic Graph Theory and Perfect Graphs, Acadamic Press, New York, (1980).
[4] Harary, F., Graph Theory, Addition-Wesley, Reading,(1969).
[5] John Clark, Derek Allan Holten, Graph Theory, Allied publishers Ltd.,(1991).
[6] Liu, C.L. Introduction to Combinatorial Mathematics, M Graw-hill, new York, (1968).
[7] Narsing Deo., Graph Theory with applications to Engineering and Computer Science, Prentice-Hall of India Private Ltd., New Delhi.
[8] Parthasarathy, K.R., Basic Graph Theory, Tata McGraw- Hill, Publishing Co., Ltd., New Delhi, (1994).
[9] Robin J. Wilson, Introduction to Graph Theory, Longman, Harlow (1985).
[10] Tremblay, J.P., Manohar, R., Discrete Mathematical Structures with Applications to Computer Science.

