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Abstract 

In this paper we study the effect of removal of vertices or edges and addition of edges 

on the independent domination number. Based on the changes, we define six classes of graphs. 

We investigate the changes and un-changes on certain special class of graphs. We also 

characterize some of the classes of graphs. Further we obtain some necessary conditions and 

some sufficient conditions for a graph to be a member of one of the six classes. 

Keywords: Changing and unchanging graphs, independent domination in graphs, non-split 

domination of graphs, CVR, CER, CEA, UVR,UER, and UEA 

Introduction: 

The concept of domination in graphs was introduced by Ore [27]. In 1975, Cockayne 

and Hedetniemi unfolded its diverse aspects by surveying all the available results and citing its 
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application potential in a variety of scientific areas. Prom then on, there has been rapid growth 

of research in this area. 

Even though the concept of domination was introduced by Ore [27] in his book 'Theory 

of graphs 'in the year 1962, rapid growth has been made in the area only when Walikar et al. 

published their monograph [32] on domination. Since then, the vistas of domination was 

expanded by Graph theorists by defining hundreds of domination parameters. These parameters 

are defined by imposing additional conditions on a dominating set.  

The vertex set of 𝐺 is partitioned into three sets according to how the removal of vertices 

affect 𝑖(𝐺). Let 𝑉 = 𝑉0 ∪ 𝑉+ ∪ 𝑉− where 

𝑉0 = {𝑣 ∈ 𝑉: 𝑖(𝐺 − 𝑣) = 𝑖(𝐺)} 

𝑉+ = {𝑣 ∈ 𝑉: 𝑖(𝐺 − 𝑣) > 𝑖(𝐺)} and 𝑉− = {𝑣 ∈ 𝑉: 𝑖(𝐺 − 𝑣) < 𝑖(𝐺)} 

Similarly, the edge set can be partitioned into  

𝐸0 = {𝑒 ∈ 𝐸: 𝑖(𝐺 − 𝑒) = 𝑖(𝐺)}and 

𝐸+ = {𝑒 ∈ 𝐸: 𝑖(𝐺 − 𝑒) > 𝑖(𝐺)} 

For example. consider the graph given in Fig 2.1 

 
𝑢2 e 3 <3 e d <4 e 6 *° 

Fig.2.1 

Here 𝑉0 = {𝑢1, 𝑢2, 𝑢4, 𝑢6}, 𝑉
+ = {𝑢3}, 𝑉

− = {𝑢5}, 𝐸
0 = {𝑒1, 𝑒5, 𝑒6} and 𝐸+ = {𝑒2, 𝑒3, 𝑒4}  

1.1 Changing Vertex Removal (𝑪𝑽𝑹) 

Theorem 1.1.1. Let 𝐺 ≅ 𝐾𝑚,𝑛(𝑚 ≤ 𝑛) with bipartition (𝑉1, 𝑉2) where |𝑉1| = 𝑚 and |𝑉2| =
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𝑛. Then 𝑉− = 𝑉1 ∪ 𝑉2 if 𝑚 = 𝑛 and 𝑉− = 𝑉1, 𝑉
0 = 𝑉2 if 𝑚 < 𝑛. 

Proof. If 𝑚 = 𝑛, since 𝑖(𝐺) = 𝑚 we have 𝑉− = 𝑉1 ∪ 𝑉2. Suppose 𝑚 < 𝑛. Then 𝑖(𝐺) = 𝑚  

and for all 𝑣 ∈ 𝑉1, 𝑖(𝐺 − 𝑣) = 𝑚 − 1 and so 𝑉1 ⊆ 𝑉−. For all 𝑣 ∈ 𝑉2 𝑖(𝐺 − 𝑣) = 𝑚 = 𝑖(𝐺) 

and so 𝑉2 ⊆ 𝑉0. Hence 𝑉− = 𝑉1 and 𝑉0 = 𝑉2 if 𝑚 < 𝑛. 

Theorem 1.1.2. If 𝐺 ≃ 𝐶𝑝, a cycle on 𝑝 vertices, then 𝑉 = 𝑉− ∪ 𝑉+. Further more, 𝑉 = 𝑉− 

if and only if 𝑝 = 3𝑘 + 1(𝑘 ≥ 1) and 𝑉 = 𝑉0 otherwise. 

Proof. Let 𝐶𝑝 = (1,2, … , 𝑝, 1). Suppose 𝑝 = 3𝑘(𝑘 ≥ 1). Then 𝑖(𝐺) = ⌈
𝑝

3
] = 𝑘. For any 𝑗(1 ≤ 

𝑗 ≤ 3𝑘), 𝑖(𝐺 − 𝑗) = ⌈
3𝑘−1

3
⌉ = 𝑘 − 1 + 1 = 𝑘 and so 𝑗 ∈ 𝑉0 for every 𝑗. Suppose 𝑝 = 3𝑘 +

2(𝑘 ≥ 1). Now 𝑖(𝐺) = ⌈
3𝑘+2

3
] = 𝑘 + 1 and for any 𝑗(1 ≤ 𝑗 ≤ 3𝑘 + 2), 𝑖(𝐺 − 𝑗) = ⌈

3𝑘+1

3
⌉ =

𝑘 + 1 = 𝑖(𝐺) so that 𝑗 ∈ 𝑉0 for every 𝑗. Suppose 𝑝 = 3𝑘 + 1(𝑘 ≥ 1). Now 𝑖(𝐺) = ⌈
3𝑘+1

3
⌉ =

𝑘 + 1 and for any 𝑗(1 ≤ 𝑗 ≤ 3𝑘 + 1), 𝑖(𝐺 − 𝑗) = [
3𝑘

3
] = 𝑘 < 𝑖(𝐺) so that 𝑗 ∈ 𝑉− for every 𝑗.  

Thus 𝑉 = 𝑉− if and only if 𝑝 = 3𝑘 + 1(𝑘 ≥ 1) and 𝑉 = 𝑉0 otherwise. 

Theorem 1.1.3. (a) Let 𝑆 be any i (𝐺) − set of a graph 𝐺. If 𝑣 ∈ 𝑉+, then 𝑣 ∈ 𝑆 and 𝑝𝑛[𝑣, 𝑆]  

contains at least two non-adjacent vertices. 

(b) If 𝑥 ∈ 𝑉+ and 𝑦 ∈ 𝑉−, then 𝑥 and 𝑦 are not adjacent. 

(c) |𝑉0| ≥ 2|𝑉+| 

(d) 𝑖(𝐺) ≠ 𝑖(𝐺 − 𝑣) for all 𝑣 ∈ 𝑉 if and only if 𝑉 = 𝑉−. 

 Hence  

< 𝑝𝑛[𝑣, 𝑆] > contains at least two non-adjacent vertices. (b) Suppose 𝑥 ∈ 𝑉+, 𝑦 ∈ 𝑉− and 

𝑥𝑦 ∈ 𝐸(𝐺). As 𝑦 ∈ 𝑉−, let 𝑆𝑦 be an independent dominating set of 𝐺 − 𝑦 such that |𝑆𝑦| =

𝑖(𝐺) − 1. If 𝑥 ∈ 𝑆𝑦, 𝑆𝑦 dominates 𝐺1 a contradiction to minimality of 𝑖(𝐺). Suppose 𝑥 ∉ 𝑆𝑦; 

Now 𝑆𝑦 ∪ {𝑦} is an independent dominating set since  otherwise 𝑆𝑦 itself will dominate 𝐺. 

Thus 𝑆𝑦 ∪ {𝑦} is an 𝑖(𝐺) - set not containing 𝑥, a contradiction to (a) and so 𝑥𝑦 ∉ 𝐸(𝐺) (c) For 
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each 𝑣 ∈ 𝑉+, by (a), 𝑝𝑛[𝑣, 𝑆] contains two non-adjacent vertices. These vertices are in 𝑉 − 𝑆 

and so again by (a), they are not in 𝑉+. By (b), 𝑣 cannot have neighbours in 𝑉− and so these 

private neighbours must be in 𝑉0. Hence |𝑉0| ≥ 2|𝑉+| 

(d) Suppose 𝑖(𝐺) ≠ 𝑖(𝐺 − 𝑣) for all 𝑣 ∈ 𝑉. Then 𝑉0 = 𝜙 and so 𝑣 ∈ 𝑉+ or 𝑣 ∈ 𝑉−. If 𝑣 ∈ 𝑉+, 

then by (c), 𝑉0 is non- empty, which is a contradiction. Hence 𝑣 ∈ 𝑉−. Converse is obvious. 

Theorem 1.1.5. A vertex 𝑣 ∈ 𝑉+ if and only if (a) 𝑣 is not an isolate and lies in every 𝑖(𝐺) − 

set of 𝐺 and  

(b) No subset 𝑆 ⊆ 𝑉 − 𝑁(𝑣) with cardinality 𝑖(𝐺) dominates 𝐺 − 𝑣. 

Proof. Suppose 𝑣 ∈ 𝑉+. Since every isolated vertex lies in 𝑉−, 𝑣 is not an isolate. By theorem 

2.2.3 (a), 𝑣 lies in every 𝑖(𝐺) - set of 𝐺. If there exists 𝑆 ⊆ 𝑉 − 𝑁(𝑣) with |𝑆| = 𝑖(𝐺) such that 

𝑆 dominates 𝐺 − 𝑣, then we get a contradiction as 𝑣 ∈ 𝑉+ Conversely assume that 𝑣 satisfies 

(a) and (b). By (b) we observe that 𝑣 ∉ 𝑉0. By (a) we have pn[𝑣, 𝑆] − {𝑣} ≠ 𝜙 and so using 

theorem 2.2.4, we conclude that 𝑣 ∉ 𝑉−. Hence 𝑣 ∈ 𝑉+ 

Theorem 1.1.6. If a graph 𝐺 ∈ 𝐶𝑉𝑅 has order 𝑛 = (Δ(𝐺) + 1)(𝑖(𝐺) − 1) + 1 then 𝐺 is 

regular. 

Proof. Suppose 𝐺 ∈ 𝐶𝑉𝑅 with 𝑛 = (Δ(𝐺) + 1)(𝑖(𝐺) − 1) + 1. By theorem 2.2.3 

(d), since 𝐺 ∈ 𝐶𝑉𝑅 we have 𝑉 = 𝑉−. Let 𝑆𝑡 denote an 𝑖(𝐺). set of 𝐺 − 𝑢, so that |𝑆𝑢| = 𝑖(𝐺) −

1. In order to dominate the (Δ(𝐺) + 1)(𝑖(𝐺) − 1) vertices of 𝐺 − 𝑢, each element of 𝑆u must 

dominate exactly Δ(𝐺) + 1 vertices and so has degree Δ(𝐺). Thus no two vertices in 𝑆u have 

a common neighbor. To prove 𝐺 is regular, it is enough to prove that for any arbitrary vertex 

𝑥, 𝑥 ∈ 𝑆𝑢 for some 𝑢. Let 𝑟 ∈ 𝑆𝑥. We prove that 𝑥 ∈ 𝑆𝑟. Suppose 𝑥 ∉ 𝑆𝑟. Since 𝐺 ∈ 𝐶𝑉𝑅 𝑆𝑟 ∩

𝑁[𝑟] = 𝜙. Each vertex in 𝑆𝑥 − {𝑟} dominates a unique vertex of 𝑆𝑟. So the remaining vertex 

in 𝑆𝑟 which is not 𝑥, must be dominated by 𝑆𝑧 and so must be dominated by 𝑟, which is a 

contradiction as 𝑆𝑟 ∩ 𝑁[𝑟] = 𝜙. Hence 𝑥 ∈ 𝑆𝑟 and so 𝐺 is regular.  
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The following are immediate. 

Theorem 1.1.7. Let 𝐺 be a graph with Δ(𝐺) = 𝑝 − 2 and 𝑣 be a verter of degree 𝑝 − 2 such 

that 𝑉 − 𝑁[𝑣] = {𝑢}. Then 𝑢 ∈ 𝑉−. 

Corollary 1.1.8. If 𝐺 is (𝑝 − 2) -regular such that 𝑝 ≠ 2 then 𝑉 = 𝑉−. 

1.2 Changing Edge Removal (𝑪𝑬𝑹) 

Theorem 1.2.1. A graph 𝐺 ∈ 𝐶𝐸𝑅 if and only if 𝐺 is a galaxy, i.e. a forest in which each 

component is a star. 

Proof. If 𝐺 is a galaxy, clearly 𝐺 ∈ 𝐶𝐸𝑅. Suppose 𝐺 ∈ 𝐶𝐸𝑅 and let 𝑆 be an 𝑖(𝐺) - set of 𝐺. 

There can be no edge between two vertices in 𝑉 − 𝑆 since otherwise 𝑆 will still dominate 𝐺 −

𝑆 if such an edge is removed. Also every vertex of degree at least two must lie in 𝑆. Thus 𝐺 is 

a union of stars and so a galaxy. ◻ 

Theorem 1.2.2. If 𝑃𝑝 is 𝑎 path on 𝑝 vertices where 𝑝 = 3𝑘(𝑘 ≥ 1) then 𝐸 = 𝐸0 ∪ 𝐸+ where 

𝐸0 = {𝑒𝑗 ∋ 𝑗 ≡ 0(mod3)} and 𝐸+ = {𝑒𝑗 ∋ 𝑗 ≡ 1,2(mod3)}. 

Proof. Let 𝑃𝑝 = (1,2, … , 𝑝) and let 𝑒1, 𝑒2, … , 𝑒3𝑘−1 be the edges of 𝑃𝑝. Then 𝑖(𝑃𝑝) = 𝑘. 

Consider 𝑃𝑝 − 𝑒𝑗(1 ≤ 𝑗 ≤ 3𝑘 − 1). Let 𝑃𝑝 − 𝑒𝑗 = 𝑃1 ∪ 𝑃2 where 

𝑃1 = (1,2, … , 𝑗) is a path on 𝑗 vertices and 𝑃2 = (𝑗 + 1, 𝑗 + 2, … ,3𝑘) is a path on 3𝑘 − 𝑗 

vertices. 

 Case (i): 𝑗 ≡ 0(mod3) 

Now 3𝑘 − 𝑗 ≡ 0(mod3) and so 𝑖(𝑃𝑝 − 𝑒𝑗) = 𝑖(𝑃1) + 𝑖(𝑃2) = ⌈
𝑖

3
] + ⌈

3𝑘−𝑗

3
⌉ =

𝑗

3
+

3𝑘−1

3
= 𝑘 =

𝑖(𝑃𝑝) 

Case(ii): 𝑗 ≡ 1(mod3) 

Now 3𝑘 − 𝑗 ≡ 2(mod3) and so  

𝑖(𝑃𝑝 − 𝑒𝑗) = [
𝑗

3
] + ⌈

3𝑘 − 𝑗

3
⌉ =

𝑗 − 1

3
+ 1 +

3𝑘 − 𝑗 − 2

3
+ 1 =

𝑎𝑘 + 3

3
= 𝑘 + 1 = 𝑖(𝑃𝑝) + 1 
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Case(iii): 𝑗 ≡ 2(mod3) 

Now 3𝑘 − 𝑗 ≡ 1(mod3) and so 𝑖(𝑃𝑝 − 𝑒𝑗) = [
𝑖

3
] + [

3𝑘−𝑗

3
⌉ =

𝑖−2

3
+ 1 +

3𝑘−𝑗−1

3
+ 1 = 𝑘 + 1 =

𝑖(𝑃𝐷‾ ) + 1. Hence 𝐸0 = {𝑒𝑗 ∋ 𝑗 ≡ 0(mod3)} and 𝐸+ = {𝑒𝑗 ∋ 𝑗 ≡ 1 or 2(mod3)}.  ◻ 

Theorem 1.2.3.. If 𝑃p is a path on 𝑝 vertices where 𝑝 = 3𝑘 + 2(𝑘 ≥ 0) then 𝐸 = 𝐸0 ∪ 𝐸+ 

where 𝐸0 = {𝑒𝑗 ∋ 𝑗 ≡ 0 or 2(mod3)} and 𝐸+ = {𝑒𝑗 ∋ 𝑗 ≡ 1(mod3)}. 

Proof. Similar to Theorem 2.3.2. 

1.3  Changing Edge Addition (𝑪𝑬𝑨) 

Example 1.3.1. If 𝐺 ≅ 𝐾𝑝̅̅̅̅  then 𝐺 ∈ (𝐶𝑉𝑅) ∪ (𝐶𝐸𝐴). 

Theorem 1.3.1. No path is in the class CEA. 

Proof. Let 𝑃𝑝 = (1,2, … , 𝑝) and 𝑒1, 𝑒2, … , 𝑒𝑝−1 be the edges of 𝑃𝑝. If 𝑝 ≡ 0 or 2(mod3), then 

let 𝑒 = (1,3). In the first case, 𝑖(𝑃𝑝) = 𝑖(𝑃𝑝 + 𝑒) =
𝑝

3
 and in the second case 𝑖(𝑃𝑝) =

𝑖(𝑃𝑝 + 𝑒) = ⌈3
[
]. If 𝑝 ≡ 1(mod3), let 𝑒 = (1, 𝑝). Now 𝑖(𝑃𝑝) = 𝑖(𝑃𝑝 + 𝑒) = [

𝑝
3
] and 𝑠0 no 

path is in the class 𝐶𝐸𝐴. ◻ 

Remark 1.3.1. If 𝐺 is a graph with Δ(𝐺) = 𝑝 − 1 such that 𝐺K̸𝑝, then 𝐺 is 

not in the class 𝐶𝐸𝐴. 

Theorem 1.3.2. If 𝐺 ≅ 𝐾𝑚,𝑛(𝑚 ≤ 𝑛) then 𝐺 ∈ 𝐶𝐸𝐴 if and only if 𝑚 = 𝑛. 

Proof. Let 𝐺 = (𝑋, 𝑌) where 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚} and 𝑌 = {𝑦1, 𝑦2 … , 𝑦𝑛}. Suppose 𝐺 ∈ 𝐶𝐸𝐴 

and 𝑚 ≠ 𝑛. If 𝑒 = (𝑦1, 𝑦2), then 𝑖(𝐺 + 𝑒) = 𝑚 = 𝑖(𝐺) which is a contradiction. Conversely, 

suppose 𝑚 = 𝑛. 𝑖(𝐾𝑚,𝑚) = 𝑚 and for all edges 𝑒 = (𝑥𝑖, 𝑥𝑗) or (𝑦𝑖 , 𝑦𝑗)(1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑖 ≠ 𝑗), 

we have 𝑖(𝐾𝑚,𝑚 + 𝑒) = 𝑚 − 1 ≠ 𝑖(𝐾𝑚,𝑚) and so 𝐾𝑚,𝑚 ∈ 𝐶𝐸𝐴. ◻ 

Theorem 1.3.3. Let 𝐺 be a graph with 𝑖(𝐺) = 2. If 𝐺 ∈ 𝐶𝐸𝐴 then 𝐺‾ is a galaxy and if 𝐺‾ is a 

galaxy with at lenst two components then 𝐺 ∈ 𝐶𝐸𝐴. 
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Proof. Since 𝑖(𝐺) = 2 and 𝐺 ∈ 𝐶𝐸𝐴, we have 𝑖(𝐺 + 𝑒) = 1∀𝑒 ∈ 𝐸(𝐺‾). Hence for 𝑒 =

(𝑢, 𝑣) ∈ 𝐸(𝐺‾) at least one of 𝑢 or 𝑣 is of degree 𝑝 − 1 in 𝐺 + 𝑒 and so every edge in 𝐸(𝐺‾) is 

a pendent edge. Thus 𝐺‾ is a galaxy. Conversely, by adding any edge from 𝐸(𝐺‾) in 𝐺, the 

respective pendent vertex in 𝐺‾ becomes an universal vertex in 𝐺 + 𝑒. So 𝑖(𝐺 + 𝑒) = 1∀𝑒 ∈

𝐸(𝐺‾) and hence 𝐺 ∈ 𝐶𝐸𝐴. 

1.4 Unchanging Vertex Removal (𝑼𝑽𝑹) 

Example 1.4. 1. If 𝐺 ≅ 𝐾𝑝 then 𝑉 = 𝑉0 and so 𝐺 ∈ 𝑈𝑉𝑅. 

2. If 𝐺 is a unicyclic graph obtained by drawing an edge between a vertex of a cycle 𝐶3𝑘 and a 

pendent vertex of a path 𝑃3𝑙 then 𝐺 ∈ 𝑈𝑉𝑅. 

Lemma 1.4.1. Let 𝐺 be any graph with 𝛿(𝐺) = 1. If 𝑉0 = 𝑉, then every support is adjacent to 

exactly one pendent vertex. 

Proof. Suppose 𝑢 is a support which is adjacent to two or more pendent vertices. If there exists 

an 𝑖(𝐺) -set containing 𝑢, removal of 𝑢 increases 𝑖(𝐺). If not, removal of any pendent vertex 

adjacent to 𝑢 decreases 𝑖(𝐺). These contradictions prove that every support is adjacent to 

exactly one pendent vertex. ◻ 

Remark 1.4.1. Converse of lemma 2.5.2 is not true. If 𝐺 ≅ 𝑃4, 𝑉
0(𝐺) ≠ 𝑉(𝐺). 

Definition 1.4.4. Two supports 𝑢 and 𝑣 are said to be consecutive if the unique 𝑢 − 𝑣 path 

contains no other support. 

Theorem 1.4.2. Let 𝑇 be a tree. 𝑉(𝑇) = 𝑉0 if and only if every support is adjacent to exactly  

one pendent vertex and 𝑑(𝑢, 𝑣) ≡ 2(mod3) for any two consecutives supports 𝑢 and 𝑣. 

Proof. Suppose that every support is adjacent to exactly one pendent vertex and 𝑑(𝑢, 𝑣) ≡

2(mod3) for any two consecutive supports 𝑢 and 𝑣. Let 𝑢 and 𝑣 be two consecutive supports. 

Let 𝑢 = 𝑢1, 𝑢2, … , 𝑢𝑛 = 𝑣 be the 𝑢 − 𝑣 path where𝑛 ≡ 0(mod3). Let 𝑆 be any 𝑖(𝑇) - set. 

Without loss of generality we can assume that {𝑢 = 𝑢1, 𝑢4, 𝑢7, … , 𝑣} ⊆ 𝑆. For 𝑢𝑖 ∈ 𝑆 with 1 <
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𝑖 < 𝑛, 𝑆 − {𝑢𝑖} does not dominate 𝑢𝑖−1. For 𝑢𝑖 , 𝑖 = 1 to 𝑛, 𝑆 − {𝑢𝑖} does not dominate 𝑣𝑖, the 

pendent adjacent to 𝑢𝑖. Removal of any other vertex in 𝑇 does not change 𝑖(𝑇). Hence 𝑉0 = 𝑉. 

Conversely, assume 𝑉0 = 𝑉. By lemma 2.5.2, every support is adjacent to exactly one pendent 

vertex. Suppose there exists two consecutive supports 𝑢 and 𝑣 such that 𝑑(𝑢, 𝑣) ≢ 2(mod3). 

Case(i), 𝑑(𝑢, 𝑣) ≡ 0(mod3) 

Let 𝑢 = 𝑢1, 𝑢2, … , 𝑢𝑛 = 𝑣 be the 𝑢 − 𝑣 path where 𝑛 ≡ 1(mod3). Without loss of generality 

we can assume that if 𝑆 is any 𝑖(𝑇) -set then {𝑢1, 𝑢4, … , 𝑢𝑛} ⊆ 𝑆. Now 𝑆 − {𝑢4} increases 𝑖(𝐺) 

since now 𝑢3 is not dominated by this set. Hence 𝑢4 ∉ 𝑉0 which is a contradiction. 

 Case(ii), 𝑑(𝑢, 𝑣) ≡ 1(mod3) 

Let 𝑢1, 𝑣1 be the pendent vertioes adjacent to 𝑢 and 𝑣. Let 𝑆 be any 𝑖(𝑇) − set. Since 𝑢, 𝑣 are  

adjacent, without loss of generality, we can assume that {𝑢1, 𝑣1} ⊆ 𝑆. Now 𝑆 − {𝑣1} decreases 

𝑖(𝑇) and so 𝑣1 ∉ 𝑉0 which is a contradiction. Thus 𝑑(𝑢, 𝑣) ≡ 2(mod3) for every two 

consecutive supports 𝑢 and 𝑣. ◻ 

Corollary 1.4.6. If 𝐺 ≅ 𝑃𝑝 then 𝑉0 = 𝑉 if and only if 𝑝 = 3𝑘 + 2(𝑘 ≥ 0). 

Theorem 1.4.7. For any tree 𝑇 with at least two vertices, 𝑉0 ≠ 𝜙. 

Proof. Let 𝑢 be a pendent vertex and 𝑣 be the support adjacent to 𝑢. Every 𝑖(𝑇) - set 𝑆 of 𝑇 

contains either 𝑢 or 𝑣. If 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉0 and if 𝑣 ∈ 𝑆, 𝑢 ∈ 𝑉0. Thus 𝑉0 ≠ 𝜙. 

1.5 Unchanging Edge Removal (𝑼𝑬𝑹) 

Example 1.5.1. (i) If 𝐺 ≅ 𝐶𝑝 then 𝐸 = 𝐸0 and so 𝐺 ∈ 𝑈𝐸𝑅. 

(ii) If 𝐺 ≅ 𝐾𝑝 then 𝐺 ∈ 𝑈𝐸𝑅. 

(iii) If 𝐺 ≅ 𝐾𝑚,𝑛(𝑚, 𝑛 ≥ 2) then 𝐺 ≅ 𝑈𝐸𝑅. 

Theorem 1.5.1. If 𝑃𝑝 is a path on 𝑝 vertices where 𝑝 = 3𝑘 + 1(𝑘 ≥ 0) then 𝐸0 = 𝐸 

Proof. Let 𝑃𝑝 = (1,2, … , 𝑝) and let 𝑒1, 𝑒2, … , 𝑒3𝑘 be the edges of 𝑃𝑝. Then 𝑖(𝑃𝑝) = 𝑘 + 1. 
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Consider 𝑃𝑝 − 𝑒𝑗(1 ≤ 𝑗 ≤ 3𝑘). Let 𝑃𝑝 − 𝑒𝑗 = 𝑃1 ∪ 𝑃2 where 𝑃1 = (1,2, … , 𝑗) is a path on 𝑗 

vertices and 𝑃2 = (𝑗 + 1, 𝑗 + 2,… ,3𝑘 + 1) is a path on 3𝑘 + 1 − 𝑗 vertices. Case(i). 𝑗 ≡

0(mod3) 

Now 3𝑘 + 1 − 𝑗 ≡ 1(mod3) and so 

𝑖(𝑃𝑝 − 𝑒𝑗) = 𝑖(𝑃1) + 𝑖(𝑃2) = [
𝑖

3
⌉ + ⌈

3𝑘 + 1 − 𝑗

3
⌉ =

𝑗

3
+
3𝑘 + 1 − 𝑗 − 1

3
+ 1 =

3𝑘 + 3

3

= 𝑘 + 1 = 𝑖(𝑃𝑝) 

Case(ii). 𝑗 ≡ 1(mod3) 

Now 3𝑘 + 1 − 𝑗 ≡ 0(mod3) and so 

𝑖(𝑃𝑝 − 𝑒𝑗) = 𝑖(𝑃1) + 𝑖(𝑃2) = ⌈
𝑗

3
⌉ + ⌈

𝑎𝑘 + 1 − 𝑗

3
⌉ =

𝑗 − 1

3
+ 1 +

3𝑘 + 1 − 𝑖

3
= 𝑘 + 1

= 𝑖(𝑃𝑝) 

Case(iii). 𝑗 ≡ 2(mod3) 

Now 3𝑘 + 1 − 𝑗 ≡ 2(mod3) and so 

𝑖(𝑃𝑝 − 𝑒𝑗) = 𝑖(𝑃1) + 𝑖(𝑃2) =
𝑗 − 2

3
+ 1 +

3𝑘 + 1 − 𝑗 − 2

3
+ 1 = 𝑘 + 1 = 𝑖(𝑃𝑝) 

Hence 𝐸0 = 𝐸. 

Proposition 1.5.3. For any connected graph 𝐺, 𝐺 ∘ 𝐾1 ∈ 𝑈𝐸𝑅. 

Proof. Let 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑝} and 𝐸(𝐺) = {𝑒1, 𝑒2, … , 𝑒𝑞}. If 𝑆 = {𝑢𝑖 , 1 ≤ 

𝑖 ≤ 𝑝}, {𝑑𝑖, 1 ≤ 𝑖 ≤ 𝑝} are the sets of pendent vertios and pendent edges of 𝐺 ∘ 𝐾1 respectively, 

then 𝑆 is a minimum independent dominating set of 𝐺 ∘ 𝐾1 and so 𝑖(𝐺 ∘ 𝐾1) = 𝑝. Also 

𝑖((𝐺 ∘ 𝐾1) − 𝑒𝑖) = 𝑝 for every 1 ≤ 𝑖 ≤ 𝑞. Consider (𝐺 ∘ 𝐾1) − 𝑑𝑗 where 𝑑𝑗 = 𝑣𝑗𝑢𝑗, Since 𝐺 

is connected, there exists a vertex 𝑣1 ∈ 𝑉(𝐺) such that 𝑣1 is adjacent to 𝑣𝑗 . Now 𝑆 − {𝑢𝑖} ∪

{𝑣𝑙} is an 𝑖(𝐺) -set of 𝐺 ∘ 𝐾1 and so 𝑖 ((𝐺 ∘ 𝐾1) − 𝑑𝑗) = 𝑝 for all 1 ≤ 𝑗 ≤ 𝑝. Thus 𝐺 ∘ 𝐾1 ∈

𝑈𝐸𝑅. ◻ 
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1.6 Unchanging Edge Addition (𝑼𝑬𝑨) 

Example 1.6.1. (i) If 𝐺 ≅ 𝑚𝐾2 then 𝐺 ∈ (𝐶𝐸𝑅) ∩ (𝑈𝐸𝐴). 

(ii) If 𝐺 ≅ 𝐾1,𝑝−1 then 𝐺 ∈ (𝐶𝐸𝑅) ∩ (𝑈𝐸𝐴). 

(iii) It 𝐺 ≅ 𝐾𝑝 − 𝑒 then 𝐺 ∈ 𝑈𝐸𝐴. 

Theorem 1.6.2. If 𝑃𝑝 is a path on p vertices, then 𝑃𝑝 ∈ 𝑈𝐸𝐴 if and only if 𝑝 = 3 or 𝑝 = 3𝑘 +

2(𝑘 ≥ 1). 

Proof. Suppose 𝑃𝑝 ∈ 𝑈𝐸𝐴. Let 𝑝 = 3𝑘. Let 𝑃𝑝 = (1,2, … ,3𝑘) and suppose that 𝑘 > 1. 

Consider the edge 𝑒 = (2,5). Then 𝑖(𝑃𝑝 + 𝑒) = 𝑘 + 1 whereas 𝑖(𝑃𝑝) = 𝑘 and so 𝑃𝑝 ∉ 𝑈𝐸𝐴 

which is a contradiction. Hence 𝑝 ≠ 3𝑘(𝑘 > 2). Similarly if 𝑝 = 3𝑘 + 1 with 𝑒 =

(1,3), 𝑖(𝑃𝑝 + 𝑒) = 𝑘 whereas 𝑖(𝑃𝑝) = 𝑘 + 1 and so 𝑃𝑝 ∉ 𝑈𝐸𝐴 which is a contradiction. Hence 

𝑛 ≠ 3𝑘 + 1 and so either 𝑝 = 3 or 𝑝 = 3𝑘 + 2.  

Proposition 1.6.3. A cycle 𝐶𝑝 ∈ 𝑈𝐸𝐴 if and only if 𝑝 ≠ 1(mod3). 

Proof. Suppose 𝐶𝑝 ∈ 𝑈𝐸𝐴 and 𝑝 ≡ 1(mod3). Let 𝑝 = 3𝑘 + 1 and 𝐶𝑝 = ⟨𝑣1, 𝑣2, … , 𝑣3𝑘+1). 

Then 𝑖(𝐶𝑝 + 𝑒) = 𝑘 where 𝑒 = (𝑣1, 𝑣3) and 𝑖(𝐶𝑝) = 𝑘 + 1. This violation of the assumption 

helps to conclude that 𝑝 ≢ 1(mod3). Conversely, if 𝑝 ≡ 0(mod3) or 𝑝 ≡ 2(mod3), it is easy  

to observe that 𝐶𝑝 ∈ 𝑈𝐸𝐴. ◻  

Proposition 1.6.4. Let 𝑇 be a caterpillar in which altermate vertices are supports and at most 

one support is adjacent to two or more pendent vertices. Then 𝑇 ∈ UEA. 

Proof. By choice of 𝑇, the set of all supports 𝑆 is a minimum independent dominating set. 

Suppose an edge is drawn between two supports 𝑢 and 𝑣 where 𝑢 is one which is adjacent to 

exactly one pendent vertex. Then 𝑆 − {𝑢} ∪ {𝑤} is a minimum independent dominating set 

where 𝑤 is the pendent vertex adjacent to 𝑢. Addition of any other edge leaves 𝑆 unaffected 

and so 𝑇 ∈ 𝑈𝐸𝐴. ◻ 
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Remark 1.6.5. If the caterpillar described in proposition 2.7.4 has two or more 

supports which are adjacent to two or more pendent vertices, addition of an edge between these 

supports increases 𝑖(𝐺) and so 𝑇 ∉ 𝑈𝐸𝐴. 

The hypothesis of proposition 2.7.4 is not necessary. For example, 𝑃3 ∈ 𝑈𝐸𝐴 but 𝑃i 

does not satisfy the hypothesis of proposition 2.7.4. 

Proposition 2.7.6. If 𝑉− is empty then 𝐺 ∈ 𝑈𝐸𝐴. 

Proof. Suppose 𝐺 ∈ 𝑈𝐸𝐴 and 𝑣 ∈ 𝑉−. Then 𝑖(𝐺 − 𝑣) < 𝑖(𝐺) and let 𝑆 be an 𝑖(𝐺) - set of 𝐺 −

𝑣. Clearly 𝑁(𝑣) ∩ 𝑆 = 𝜙. Now adding an edge 𝑒 = (𝑣, 𝑢) for any 𝑢 ∈ 𝑆 we have 𝑖(𝐺 + 𝑒) < 

𝑖(𝐺) which is a contradiction. Hence 𝑉− is empty. ◻ 

Remark 1.6.7. Converse of proposition 2.7.6 is not true. 

Conclusion: 

we obtain several results on changing and unchanging independent domination number 

of a graph. 
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