
3449 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

Deployment of Formal Verification for RISC Processor RTL

Signoff

Arpit Awasthi

1
, VNR Vignana Jyothi Institute of Engineering & Technology

Dr Kalapala Vidya Sagar
2
, Prof EIE, VNR Vignana Jyothi Institute of Engineering & Technology

G.Venkata Hari Prasad
3
, CMR College of Engineering & Technology,

drgvenkatahariprasad@cmrcet.ac.in

Aneesha Dacha
4
, VNR Vignana Jyothi Institute of Engineering & Technology

D Ramya Sai
5
, VNR Vignana Jyothi Institute of Engineering & Technology

Mail ID: aneesha.dacha@gmail.com

Abstract:

With increasing logic density being encapsulated in modern-day processing electronic chips,

verification has been an increasingly taxing endeavour with enormous engineering and

human resources to validate the integrity of design Intellectual Property modules. The

primary simulation-driven testbench environment is not supporting exhaustive assessment to

the stringent adherence to specifications, and these missed bugs percolate to the silicon stage,

making defective chips. This paper demonstrates the successful deployment of a robust novel

Formal Verification based methodology for verifying of RTL Design Code of the RISC

Processor. The proposed methodology is also complemented with visualization of relevant

quantitative signoff metrics for capturing insights about quality of Hardware Description

Language (HDL) Code aiding in reducing time for RTL Freeze.

Keywords:

Formal Verification, RISC, SystemVerilog Assertions, Coverage, RTL Signoff

Introduction:

The verification RTL Signoff endeavour primarily deals with evaluating compliance with

specifications. Conventional techniques have been focused on generating stimulus to activate

the Design Under Test (DUT) and observe output behaviour. The major pitfalls in such an

approach are poor quality of randomized stimulus fails to exhaustively evaluate the design

leaving many unverified regions in RTL Code. 2020 Wilson Research Group Functional

Verification Study [1] did an elaborative study and concluded that statistically, 68 per cent of

projects are running behind expected Time to Market constraints and multiple respins of

happening to owe to the non-detection of logical functional bugs. Due to this non-exhaustive

stimulus in a simulation-based approach, multiple regressions and randomization with

different seeds are required, which consumes exorbitant time in building different verification

testbench components and debugging them. This calls for a serious introspection to overcome

these inefficient verification methodologies, and this necessitated the development of novel

analytical frameworks with a combination of semantic analysis and formal methods to

develop RTL Signoff methodology [2]. This paper adopts a Formal Verification based Model

Checking approach for a RISC based processor for RTL Signoff and adopts an empirically

driven Signoff approach coupled with mutation analysis to develop a Signoff approach.

3450 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

Literature Survey:

Formal Verification (FV) is a rigorous mathematical algorithmic approach in which the

different temporal activities in design are captured as properties and then fed to a Formal

Verification tool to test those scenarios exhaustively by applying all the possible

combinations [3]. The adoption of FV was extremely limited for RTL Signoff, but recent

advancements in SMT and SAT-based solvers have enabled enhanced adoption and

development of RTL Signoff Techniques [4] [5] [6]. Siegal [7] laid the novel foundational

work of developing an empirically driven property development approach for exhaustive

verification using formal techniques. There is currently a lack of systemic methodology and

techniques for deploying for End-to-End RTL Signoff. Yalin [8] outlines an effective strategy

for combating issues encountered in deploying FV, aiding in seamlessly mitigating issues

encountered. Nicole et al. [9] [10] demonstrate a SystemVerilog Assertions (SVA) [11] based

approach for detecting verification blindspots and Hardware Trojans vulnerabilities for robust

assessment. Ronak et al. [12] exhibit successful integration of FV to shrink verification

signoff at subsystem level. N. Bombieri et al. [13] [14] presents an Assertion Based

Verification (ABV) environment solution to build assertion reusable libraries and plug the

gap with respect to bug escapes. B. Alizadeh et al. [15][16] introduced a formal debugging

approach coupled with mutation analysis to detect multiple functional specification mismatch

in a shorter run time. P. Aggarwal et al. [17] illustrate a robust coverage driven formal

methodology for determining the effectiveness of different abstraction models and enhance

coverage metric. In the existing Simulation approach, a Constrained Random Verification

(CRV) based methodology is adopted to generate a stimulus that triggers DUT, and output is

analyzed with respect to state transition soundness and integrity. For a simulation-based

approach, the input test vectors are randomized. Figure 1 represents the block diagram of the

simulation-based Dynamic Verification Methodology. The primary conclusion drawn is

Simulation-based testbench environment takes a large amount of time to craft different

testbench components like Transactor, Generator, Driver with multiple interfaces. There are a

plethora of Coverage holes and corner-case bugs escaping causing respins along with

multiple regressions and delayed Time to Market (TMM), which depicts that it is not an

efficient approach.

Figure 1 Dynamic Simulation Verification Environment for RISC Processor

3451 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

Research Methodology

This paper presents a novel formal verification methodology approach which is coupled with

the evaluation of different metric relevant to qualify the integrity of the Design RTL Model.

In Formal Verification Methodology, the design intent from specifications and all the

temporal activities are captured in the form of SystemVerilog Assertions (SVA). These SVA

form the building blocks for crafting checkers, including Boolean expressions, sequences,

and properties that are all finally integrated to build SVA's, as shown in Figure 2. Cover

statements are scripted to assess the quality of stimulus generated and evaluate if all stimulus

scenarios are generated to be driven to the Design module. Assume statements are used to set

any configuration environment for setting any constraints. These three statements, i.e.,

Asserts, Cover and Assume, are then fed to the Formal Verification Tool to perform an

exhaustive analysis on DUT. The tool being used for Formal Analysis is Synopsys VC

Formal.

Figure 2 Components of Formal Verification

SystemVerilog Assertion (SVA) based Model Checking methodology is employed for the

Formal Verification of RISC Processor. The microarchitecture implemented of the RISC

Processor is shown in Figure 3. SVA is crafted depending on the test plan after assessing the

specifications of the RISC Processor. The tool being used is Synopsys VC Formal

Verification Tool. All the temporal design activities are captured in the form of SVA and fed

to the tool. The tool gives the advantage. This approach's advantage is that verification needs

not to be dependent on the limited scenarios scripted, but the tests will be exhaustive,

covering the entire design space. To weed out, illegal scenarios assume statements can be

integrated into SVA. The tool also gives liberty to select the type of engine solver to be

selected and the type of bounded proof depth required to assess the integrity of the design.

Few operational integrity bugs passed in the simulation were detected by the Formal

3452 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

approach, which was critical. Thus, FV proved to be a potent arsenal against simulation

resistant bugs, which, if escaped to silicon, could lead to faulty behaviour of hardware. A

detailed formal methodology flow along with metrics to be evaluated is shown in Figure 4.

The novelty of the methodology lies in adopting a metric-driven approach with analysis like

sanity linting checking, assertion density evaluation, coverage checking, connectivity

checking and mutation analysis.

Figure 3 RISC Architecture Block Diagram

Figure 4 Proposed Formal RTL Signoff Methodology

3453 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

Results Analysis and Discussion:

This section provides important insights regarding all the individual parameters which are

required to perform the formal analysis on RISC Processor Verification results. The rationale

behind their essentiality is also equally highlighted intertwined with relevant empirical

visualization.

Linting Analysis and Sanity Checking:

Linting Analysis is the first step in RTL Verification. As shown in Fig 5, many of these

issues did not get detected in simulation-based techniques. They escaped to It can help in

doing sanity checking by eliminating issues such as Non-Synthesizable constructs,

Unintentional latches, Unused declarations, Driven and undriven signals, Race conditions,

Incorrect usage of blocking and non-blocking assignments, Incomplete assignments in

subroutines, Case statement style issues, Set and reset conflicts and Out-of-range indexing

range issues. The detection of these Linting errors is critical for performing preliminary

sanity checking and weeding out Linting issues embedded in the HDL Design Model. If they

are not thwarted at this stage, these will percolate down to further stages, causing critical

issues at Synthesis Stage, resulting in corrupted gate-level netlist leading to structural faults

in silicon, causing faulty chips to get manufactured. 26 Linting were detected in Formal

Analysis, which escaped simulation-based approach, thus aiding in nipping the bug at

preliminary stages of sanity checking by performing root cause analysis.

Figure 5 Linting and Sanity Checking Results

RTL Schematic:

The VC Formal Tool is used to generate the RTL Schematic view shown in Figure .6 of the

entire processor core, depicting all the functional blocks like Memory Unit used to store

3454 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

instructions binary data, Instruction Fetch Decode Unit, Arithmetic Logic Unit and Memory

Writeback Unit. All the different functional units are examined for their connectivity

checking, ensuring the data propagation is not hindered, and forward progression with

seamless data updates policy to the memory after computation from ALU is executed. This is

extremely critical to ensure the connectivity of all the submodules ensuring there are no data

progress issues from percolating from memory modules to execution units.

Figure 6 RTL Schematic of RISC Processor

Coverage Analysis:

The Formal Coverage Analyzer (FCA) application mode is used to run unreachability

analysis and find coverage properties in design that cannot be covered with any stimulus.

This helps to find exceptions that can be used to achieve coverage closure much faster. But,

before using these exceptions for closing coverage, they need to be analyzed carefully to

ensure that they are not masking any potential bugs in the design. As shown in Figure 7, the

FCA mode metrics can perform coverage analysis of the vital performative metrics like Line,

Condition, Branch, Toggle, Finite State Machine (FSM) state, FSM transition, SystemVerilog

Covergroups. A total of 96 cover statements are scripted to exhaustively assess the checking

of all internal register state values and plug the cover holes by triggering more stimulus.

3455 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

Figure 7 Coverage Analysis

Property Density Report:

Figure. 8 shows that Property density coverage provides structural coverage of the design

code in the COI of all the properties. Bounded depth coverage reachability analysis helps

identify whether the required design code is covered within the specified proof depths. It is

empirical proof of all the internal registers, assertions statements and line of RTL codes that

are covered to detect any verification blindspots, which would aid us in crafting additional

SVA's to plug those corner cases scenarios left unverified. This kind of feedback mechanism

approach eventually helps in adding a layer of verification confidence helping in building

robust RTL Models devoid of bugs.

Figure 8 Property Density Report

3456 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

Deadlock and Livelock Detection:

The two kinds of forwarding progress issues that are being tackled are Deadlock and

Livelock. Deadlock is a critical flaw in an RTL Design in which the FSM state transition to

other states is not possible, and the design gets stuck in a particular deadlock state with no

recovery mechanism. Livelock is a phenomenon in which the state transitions only loops

between certain states recursively and cannot manoeuvre out of the trapped states. The

processor core has 3 stage pipeline architecture, so it becomes critical to detect any stalls or

glitches encountered in the forward progress of data due to deadlock issues. The timing

diagrams during debug analysis are critically investigated to ensure the temporal

specifications align with expected behaviour. As shown in Figure 9, the temporal timing

behaviour is critically examined for adherence to the specifications document.

Figure 9 Temporal Behaviour of RISC Processor

Mutation Analysis in RISC Processor:

Mutation Analysis is an essential technique being adopted in Formal Verification to assess

the quality of SystemVerilog Assertion and Covergroups and determine their robustness in

detecting artificial bugs implanted inside Design Verification environments. Tweaks are

made in the RTL functionality by modifying the RISC Processor HDL Design Code via fault

injection mechanisms. In the first phase, incorrect code is inserted into the RTL Code of

Instruction Decode block, followed by 2
nd

 phase, in which code corruption in ALU Block.

The modified faulty HDL Code is then evaluated by the Assertions and Covers statements

built, and their utility was proven as SVA Library based Formal Testbench successfully

detected faults inside the modified RTL. The same is depicted in Figure 10, which highlight

observable interjections at the terminal nodes for checking the propagated fault. All the

3457 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

flagged failed assertions have successfully demonstrated their ability to catch bugs via

Synopsys VC Formal Tool. A similar process is also tried by fault injecting mechanisms in

the Verification environment by tweaking the Assertion and Coverage library and assessing

mismatches if any false positives get triggered. Thus, the fault injection-based Mutation

Analysis mechanism helped strengthen the verification and design environments by further

refining Assertions checkers and Coverage points.

Figure 10 Fault injection analysis

Conclusion:

This paper conclusively demonstrates the effectiveness of deploying Formal Verification for

RTL Signoff of RISC Processor compared to a dynamic simulation environment. It has aided

in the rapid verification of the RTL Model with exhaustive coverage analysis coupled with

corner-case bug detections and timing analysis metrics. All the opcodes, along with their

operations intended as per specifications, are validated.

References:

1. M.Graphics,"https://blogs.sw.siemens.com/verificationhorizons/2020/10/27/prologue-

the-2020-wilson-research-group-functional-verification-study/",[Online: accessed 1-

4-2021]

2. P. Ashar, "A paradigm shift in verification methodology," 2016 Formal Methods in

Computer-Aided Design (FMCAD), Mountain View, CA, USA, 2016, pp. 6-6, DOI:

10.1109/FMCAD.2016.7886652.

3. Carl Seger, An Introduction to Formal Hardware Verification, University of British

Columbia, Vancouver, BC, Canada, 1992

4. N. Een, A. Mishchenko and R. Brayton, "Efficient implementation of property

directed reachability," 2011 Formal Methods in Computer-Aided Design (FMCAD),

Austin, TX, USA, 2011, pp. 125-134.

5. Aaron R. Bradley. 2011. SAT-based model checking without unrolling. In

https://blogs.sw.siemens.com/verificationhorizons/2020/10/27/prologue-the-2020-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2020/10/27/prologue-the-2020-wilson-research-group-functional-verification-study/

3458 | P a g e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11,S Iss 3, Dec 2022

Proceedings of the 12th international conference on verification, model checking, and

abstract interpretation. Springer-Verlag, Berlin, Heidelberg, 70–87.

6. B. Ustaoglu, S. Huhn, F. Sill Torres, D. Große and R. Drechsler, "SAT-Hard: A

Learning-Based Hardware SAT-Solver," 2019 22nd Euromicro Conference on Digital

System Design (DSD), Kallithea, Greece, 2019, pp. 74-81, doi:

10.1109/DSD.2019.00021.

7. M. Siegel, "Achieving earlier verification closure using advanced formal

verification," Formal Methods in Computer-Aided Design, Lugano, Switzerland,

2010, pp. 275-275.

8. Hu, Yalin. "Exploring formal verification methodology for FPGA-based digital

systems." Sandia National Laboratories, New Mexico, California (2012).

9. N. Fern and K. Cheng, "Evaluating Assertion Set Completeness to Expose Hardware

Trojans and Verification Blindspots," 2019 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 402-407, DOI:

10.23919/DATE.2019.8714883.

10. N. Fern, I. San, Ç. K. Koç and K. Cheng, "Hardware Trojans in incompletely

specified on-chip bus systems," 2016 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Dresden, Germany, 2016, pp. 527-530.

11. "IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and

Verification Language," in IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012),

vol., no., pp.1-1315, 22 Feb. 2018, DOI: 10.1109/IEEESTD.2018.8299595.

12. R. M. Sarikhada and P. K Shah, "Speed up the validation process by formal

verification method," 2020 IEEE International Conference for Innovation in

Technology (INOCON), Bengaluru, India, 2020, pp. 1-4, DOI:

10.1109/INOCON50539.2020.9298384.

13. N. Bombieri, R. Filippozzi, G. Pravadelli and F. Stefanni, "RTL property abstraction

for TLM assertion-based verification," 2015 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Grenoble, France, 2015, pp. 85-90, DOI:

10.7873/DATE.2015.0121.

14. T. Ghasempouri, A. Danese, G. Pravadelli, N. Bombieri and J. Raik, "RTL Assertion

Mining with Automated RTL-to-TLM Abstraction," 2019 Forum for Specification

and Design Languages (FDL), Southampton, UK, 2019, pp. 1-8, DOI:

10.1109/FDL.2019.8876941.

15. B. Alizadeh, P. Behnam and S. Sadeghi-Kohan, "A Scalable Formal Debugging

Approach with Auto-Correction Capability Based on Static Slicing and Dynamic

Ranking for RTL Datapath Designs," in IEEE Transactions on Computers, vol. 64,

no. 6, pp. 1564-1578, 1 June 2015, DOI: 10.1109/TC.2014.2329687.

16. R. Sharafinejad, B. Alizadeh and T. Nikoubin, "Formal Verification of Non-

Functional Strategies of System-Level Power Management Architecture in Modern

Processors," 2020 IEEE 14th Dallas Circuits and Systems Conference (DCAS),

Dallas, TX, USA, 2020, pp. 1-6, DOI: 10.1109/DCAS51144.2020.9330633.

17. P. Aggarwal, D. Chu, V. Kadamby and V. Singhal, "Planning for end-to-end formal

using simulation-based coverage," 2011 Formal Methods in Computer-Aided Design

(FMCAD), Austin, TX, USA, 2011, pp. 9-16.

