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ABSTRACT:  

For the production of crops, India has a broad agricultural sector. The best indicator of the 

health of farming is technical efficiency, which helps to maintain high levels of agricultural 

production. Aigner et al. (1977) and Meeusen and van den Broeck (1988) proposed stochastic 

frontier analysis (SFA), which is being used to evaluate a reliable measure of technical 

efficiency (1977). The advanced stochastic frontier analysis method developed by Colombi et 

al. (2014), Kumbhakar, Lien, and Hardaker (2014), and Tsionas and Kumbhakar (2014) is used 

in the current work. This method includes four error components and a multistage estimation 

procedure. The data was extracted from the Ministry of Agriculture and Farmers' Welfare's 

Comprehensive Cost of Cultivation Scheme (CCCS) for the period 2004–2019. The study will 

focus on four important crops: paddy, wheat, sugarcane, and maize. The study's conclusion is 

that short- and long-term errors at decision-making units result in differences in transient 

technical efficiency and persistent technical efficiency for each crop (DMU). 

Highlights: The efficiency of the farm is lowered by adding additional labour, which lowers the 

farm's profitability. When compared to other crops, wheat has a very low persistent technical 

efficiency (68%); nonetheless, this low persistent technical efficiency suggests that there may 

be room for improvement through the adoption of structural reform at the farm level. 

Keywords: Crop Farming, Technical Efficiency, Transient Technical and Persistent Technical 

Efficiency, Heterogeneity, Law of Returns 
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1. INTRODUCTION  

The production process is the core of economic analysis and results in demand fulfillment. It is 

subjected to maximizing output by using a given set of input and reducing expenditure on 

production without decreasing the optimal level of output. Agriculture, as we all know, is the 

backbone of modern civilization and provides food security. However, most developing 

countries, including India, are dealing with a declining agricultural share of total output. The 

major source of concern in Indian agriculture is the high cost of production, particularly since 

the era of the green revolution. The high cost of production in agriculture leads to a decrease in 

the profit share of the farmers. The use of input in the manufacturing process is a continuous 

process that runs from start to finish. The same thing would be applied in crop production, 

because optimal use of agricultural input must produce optimal levels of agricultural output.  

Throughout the crop production process, which includes pre-harvest and post-harvest, input 

utilization at the farm level is carried out to optimize the level of agricultural output. This 

research paper is concerned with examining the technical efficiency of farming. Whereas, 

technical efficiency is associated with wastage of input, it can be estimated through a stochastic 

frontier production function, which was first developed by Aigner, Lovell, and Schmidt (1977) 

and Meeusen and van den Broeck (1977) based on Farrell's literary work in production. In this 

research paper, an examination of technical efficiency is taken for major crops production 

during the period of 2004–2019. This study is based on panel data analysis with time variant 

efficiencies across years and crops farming using four error component stochastic frontier 

analyses. Major crops such as paddy, wheat, maize, and sugarcane are selected as crop 

variables for this study. 

2. Significance of Study 

Wheat and paddy are the most important food grains in India, particularly in the plains. Maize 

is also produced at a large scale in India, and sugarcane is a commercial crop that contributes to 

a high amount of production. India is the world's second-largest wheat producer after China, 

followed by the United States, and the world's tenth-largest wheat exporter. In terms of the 

production of wheat in India, Uttar Pradesh is the top producer, sharing 33.35% of total wheat 

production, followed by Madhya Pradesh (18.18%), Punjab (16.33%), Haryana (11.01%), 

Rajasthan (10.12%), and Bihar (5.17%). These six states account for at least 92.16% of India's 

total wheat production. India is the world's second-largest producer of paddy, as well as the 

world's largest exporter of rice. West Bengal holds the first position in the production of rice 

with 13.36% in paddy production, followed by Uttar Pradesh (13.05%), Punjab (9.91%), 

Andhra Pradesh (7.28%), Orissa (7.03%), and Telangana (6.25%). These six states constitute 

56.88% of the production of paddy at the national level. Maize is an important crop because it 

is consumed by billions of people as a staple food grain, feed, and industrial raw material. India 

is a major producer of maize as well as a consumer of the grain. The global pattern of maize 

consumption constituted 61% for feed, 17% for food, and 22% for industrial raw materials. 

Karnataka is the top producer of maize, sharing 13%, followed by Madhya Pradesh (12.43%), 
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Kerala (12.17%), Telangana (9.16%), and Tamil Nadu (7.56%). The maize production of these 

five states accounts for 46.76% of the total maize production. India is also the second-largest 

producer of sugarcane after Brazil. Uttar Pradesh is the highest producer of sugarcane in all of 

India, followed by Maharashtra (18.71%), Karnataka (10.31%), Tamil Nadu (3.81%), and 

Bihar (3.67%). Sugarcane is highest productive crops at farm level, is very intensive in 

cropping pattern (FAOSTAT, 2019). 

3.  Review of Literature  

Stochastic frontier analysis is a tool for examining efficiency, decaying productivity, 

and determinants of efficiency in agrarian holdings. The results of such tools provide 

appropriate policymaking guidance for researchers, and the government also makes favourable 

decisions to improve farm efficiency. For better implementation of agricultural policies, 

technical efficiency has numerous insights for evaluating the performance of farming. The 

frontier production function provides information about farm heterogeneity over time, such as 

climatic conditions, soil quality, irrigation facilities, labour availability, and holding size 

involved in various states, such that specific input use for crop production varies over time. 

Stochastic frontier analysis is basically suitable for cross-sectional data, but in recent years it 

has been used for panel data-based stochastic frontier analysis introduced by Cornwell, 

Schmidt, and Sickles (1990) and Kumbhakar (1990), which all decompose firm-specific 

inefficiency levels to change over time. Earlier, Greene (2005a, 2005b) developed an 

estimation procedure for separating heterogeneity from inefficiency. To overcome this 

problem, stochastic frontier analysis is to be used, with recent advancements by Colombi et al. 

(2014), Kumbhakar, Lien, and Hardaker (2014), and Tsionas and Kumbhakar (2014), which 

incorporate four error components and multistage estimation processes. The error component 

analysis exhibits resource use efficiency and farm performance in the short and long run 

(Kumbhakar, Lien, and Hardaker 2014; Lien, Kumbhakar, and Alem 2018). 

Rationalization of inefficiency is a drastic problem for farming units because 

management inefficiency leads to a decrease in output during the crop season. The neoclassical 

theory of production ignored the inefficiency component of the production process, assuming 

rational producer behavior. Farm unit management of input utilization during ploughing 

pursues an eminence role for optimum output, but failure in input utilization management leads 

to inefficiency at the farm level in both the short and long run. Inefficiency due to unobserved 

heterogeneity (weather condition and soil quality) in the short run at farm level is associated 

with transient technical inefficiency, and long-run inefficiency is associated with persistent 

technical inefficiency due to structural changes at farm level (Førsund, 2015). The law of 

variable proportion and the law of scaled returns are applied to a panel data-based frontier 

production function, which exhibit short- and long-run inefficiencies, respectively. The 

stochastic frontier analysis (SFA) framework has multiple versions developed by distinguished 

researchers who have extended this model for various sectors of the economy (Parmeter & 

Kumbhakar, 2014; Kumbhakar et al., 2017). Preference in SFA assembles a special focus on 

decomposing inefficiency by incorporating four components: firm heterogeneity, persistent 
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technical efficiency, transient technical efficiency and stochastic error (Colombi et al., 2014; 

Tsionas & Kumbhakar, 2014; Kumbhakar et al., 2014, 2015; Filippini & Greene, 2016; Minviel 

& Sipiläinen, 2018). In several ways, this model improves on the previously developed model, 

such as the fact that the farm effect embedded in persistent technical inefficiency has a 

perpetual effect on farm inefficiency. Second, the premise of time-varying inefficiency is 

unaffected by previous levels of inefficiency, implying that farmers should learn from their 

previous levels of inefficiency and improve managerial skills in order to eliminate short-run 

deficiencies in crop production at the farm. 

The error terms are classified into four types: farm-specific time-invariant latent 

heterogeneity, time-invariant or persistent technical efficiency, time-varying (transient) 

technical efficiency, and stochastic error. The model of Kumbhakar, Lien, et al. (2014, 2015) is 

described as following: 

                     yit = α0 + (xit; β) + μ
it

+ νit − η
it

− 𝑢it                          (1) 

u𝑖t ∼ iid N+ (0, σ2) 

𝜂𝑖t ∼ iid N+ (0, σ2) 

𝜈it ∼ iid N (0, σ2) 

𝜇𝑖t ∼ iid N (0, σ2) 

In this model, the main presumptions are that all error components are independently 

distributed from each other and the regressor. In the preceding equation (1), yit is the quantity of 

crop production at i farm in year t,  xit is the vector of input utilization for crop production at i 

farm in year t, β lays down for the vector of technological parameter assigned with input, and 

𝜇𝑖t seizes random effect heterogeneity at farm level, also known as farm effect. In the above 

model, there are four decompositions of error terms classified into two groups, such as, 

inefficiency index into uit (time-varying transient technical) and 𝜂𝑖t (time-invariant or persistent 

technical), and farm effect 𝜇𝑖t (time-invariant heterogeneity) and stochastic error term (vit). The 

estimation of this model is hands-on with a multistage estimation process like: 

                                          yit =  𝛼0
∗ + (xit; β) + 𝛼𝑖 + 𝜀𝑖𝑡                          (2) 

 𝛼0
∗ = 𝛼0 − 𝐸(η

i
) − (𝑢𝑖𝑡)                                  (3) 

𝛼𝑖 = μ − η
i

+ 𝐸(η
i
)                                         (4) 

𝜀𝑖𝑡 = νit − 𝑢𝑖𝑡 + 𝐸(𝑢𝑖𝑡)                                    (5) 

 𝛼0
∗ is the coefficient of particular farmer obtained using equation (3), which 𝛼0  is the time-

constant error constituent (including the farm effect  μ and the time-unchanging inefficiency 

element η
i
). 𝛼𝑖 and 𝜀𝑖𝑡 are assumed to have a constant mean and zero variance.  Translog 

Production Function is specified in context of this model based on likelihood ratio tests over 

the Cobb Douglas production function. 

𝑦𝑖𝑡 =                    𝛽0 + ∑ 𝛽1𝑙𝑛𝑋1𝑖𝑡 + ∑ 𝛽2𝑙𝑛𝑋2𝑖𝑡 +
1

2
∑ ∑ 𝛽3𝑙𝑛𝑋1𝑖𝑡𝑙𝑛𝑋2𝑖𝑡 +𝑛

𝑖=2
𝑛
𝑖=1

𝑛
𝑖=2

𝑛
𝑖=1

1

2
 ∑ 𝛽4𝑙𝑛𝑋1𝑖𝑡𝑙𝑛𝑋1𝑖𝑡 +

1

2
∑ 𝛽5𝑙𝑛𝑋2𝑖𝑡𝑙𝑛𝑋2𝑖𝑡 +𝑛

𝑖=2
𝑛
𝑖=1 μ

it
+ νit − η

it
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Here yit is per hectare crop production at i farm in t time period, 𝛽 is coefficient parameter, X1 

and X2 is input used in production process. μ
it

, νit, η
it

, 𝑎𝑛𝑑 𝑢it, all are previously defined. 

 

4. Data and Variables: 

The Ministry of Agriculture and Farmers’ Welfare under the Department of Economics and 

Statistics has collected data on the cost of cultivation for different crops produced across India. 

The Comprehensive Cost of Cultivation Scheme (CCCS) of Major Crops collects data at farm 

level. This study seeks to estimate efficiency for per-hectare crop production at the farm level 

for major crops across India. Collected data is identified as quantities of input and output in the 

production process. Quantity of inputs such as labour hours/h, machinery cost/hectare as a 

proxy variable, amount of fertilizers in kg/h, manure in quintal/h, seed in kg/h, and bullock 

hour are considered for the estimation process. 

Table: 1 Summary Statistics for Production Function at Indian Farm  

Variables Observations Mean Std. Dev. Min Max 

Crop Production (Kg/Hectare) 782 13001.05 25333.98 686 113538 

Seed (Kg/Hectare) 782 55.15048 48.28018 14 341.56 

Fertilizer (Kg/Hectare) 782 128.636 128.2559 76 724.82 

Manure (Quintal/Hectare) 782 32.28059 45.84918 0 315.13 

Human Labor (Hour/ 

Hectare) 

782 525.9714    538.9627 6.25 2631.84 

Bullock (Hour/ Hectare) 782 49.11875 53.20696 4 394.27 

Machinery Used (Hour/ 

Hectare) 

782 3698.455 3313.135 765 26071.4 

 

 

5. Results and Discussion 

The Translog production function incorporates input utilization flexibility, particularly with 

reference to time period. There are five inputs used: seed in kg, fertilizer in kg, manure in 

quintal, bullock hour, labour hour and machine cost in rupees, chosen for all four crops such as 

paddy, wheat, sugarcane, and maize represented in Table 1. Four error components based on 
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stochastic frontier analysis decay productive efficiency into persistent technical efficiency and 

transient technical efficiency. Fertilizer is significant at a 10% level for per hectare paddy 

production; driving a 1 unit increase in fertilizer utilization at the farm increases per hectare 

total production by 0.594 unit. For per-hectare wheat production, seed, manure, bullocks, and 

human labour are significant at 5%, 10%, 5%, and 1%, respectively. The findings indicate that 

increasing farm labour resulted in inefficient farming. Increase in 1 unit utilization of human 

labour in wheat farming declined by 0.764 units in per hectare production. For sugarcane 

farming, seed and manure are significant at the 1 % and 10%. Seed, in particular, is an 

important input for sugarcane production, with a one unit increase in seed resulting in 0.665 

units increase in sugarcane production per hectare. Maize, a staple food, is also an important 

crop in India. Per hectare production of maize is highly influenced by labour and machinery, 

which are significant at a 5% to 10% level. The results show that more assigned human labour 

in maize farming reduces per hectare production, whereas the use of machines in maize 

farming increases per hectare production. The combined production of these four crops enables 

efficient farming, in which seed, fertilizer, and machine use are used as inputs at the farm level. 

However, human labour is a negative indicator in all four crops because adding more human 

labour to farming does not increase per-hectare crop production.  

Table 2: Estimation of Translog Production Function 

lnyieldkg 

Variables Paddy Wheat Sugarcane Maize Combined 

lnseed 

 

0.0306 

(0.204) 

0.176** 

(0.080) 

0.665*** 

(.1536) 

0.785 

(0.841) 

0.399 

(0.372) 

lnfertilizer 

 

0.594* 

(0.314) 

0.019 

(0.693) 

0.288 

(0.868) 

0.870 

(0.963) 

0.744*** 

(0.095) 

lnmanure 

 

-0.0243 

(0.187) 

-0.390* 

(0.220) 

0.334* 

(0.213) 

-0.00210 

(0.630) 

0.513** 

(0.227) 

lnhuman 

 

-0.198 

(0.183) 

-0.764*** 

(0.078) 

-0.148 

(0.444) 

-0.396** 

(0.183) 

-0.0866 

(0.332) 

lnbullock 

 

-0.434*** 

(0.166) 

-0.700** 

(0.282) 

0.871 

(0.895) 

0.831 

(0.068) 

-0.549** 

(0.231) 

lnmachine 

 

0.125 

(0.137) 

0.792 

(0.517) 

0.824 

(0.719) 

0.572* 

(0.365) 

0.9467*** 

(0.270) 

lnseed*lnfertilizer 0.0369 

(0.124) 

0.941*** 

(0.169) 

0.462 

(0.615) 

0.985 

(0.743) 

0.420*** 

(0.129) 

lnseed*lnmanure 

 

0.0160 

(0.0628) 

0.284** 

(0.127) 

-0.0331 

(0.176) 

-0.202 

(0.176) 

0.0413 

(0.0342) 

lnseed*lnhuman -0.0590 

(0.0749) 

0.525 

(0.682) 

0.912*** 

(0.160) 

0.837 

(0.981) 

0.0917 

(0.0798) 

lnseed*lnbullock 0.0507 

(0.0502) 

0.0124 

(0.154) 

-0.296 

(0.233) 

-0.512 

(0.348) 

-0.119** 

(0.0462) 

lnseed*lnmachine 0.0421 

(0.0537) 

0.853*** 

(0.301) 

0.249 

(0.219) 

-0.586 

(0.360) 

0.0792 

(0.0781) 
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lnfertilizer*lnmanure 

 

0.0469 

(0.0904) 

-0.0253 

(0.0730) 

-0.195 

(0.443) 

-0.122 

(0.0907) 

-0.135* 

(0.0698) 

lnfertilizer*lnhuman -0.147 

(0.129) 

-0.302*** 

(0.099) 

0.0606 

(1.432) 

0.446 

(0.675) 

0.296 

(0.183) 

lnfertilizer*lnbullock 0.0500 

(0.0834) 

0.202 

(0.140) 

0.0370 

(0.499) 

-0.0944 

(0.126) 

-0.152* 

(0.0916) 

lnfertilizer*lnmachine 

 

0.233*** 

(0.0719) 

0.133 

(0.243) 

0.998** 

(0.442) 

0.0436 

(0.326) 

0.0579 

(0.109) 

lnmanur*lnhuman 

 

-0.0636 

(0.0555) 

-0.0794 

(0.0710) 

-0.660* 

(0.360) 

0.165 

(0.162) 

0.0606 

(0.0512) 

lnmanure*lnbullock 

 

-0.00268 

(0.0325) 

0.0322** 

(0.0161) 

-0.0198 

(0.159) 

0.0186 

(0.0376) 

0.00257 

(0.0206) 

lnmanure*lnmachine 0.0362 

(0.0467) 

-0.00610 

(0.0363) 

0.173 

(0.150) 

0.0207 

(0.0581) 

-0.0982** 

(0.0431) 

lnhuman*lnbullock 

 

-0.0589 

(0.0454) 

-0.152** 

(0.0753) 

-0.525 

(0.614) 

-0.0974 

(0.288) 

-0.144** 

(0.0633) 

lnhuman*lnmachine 

 

0.0911* 

(0.0477) 

0.468*** 

(0.178) 

0.323*** 

(0.071) 

0.650 

(0.445) 

0.370*** 

(0.0779) 

lnbullock*lnmachine 

 

-0.117*** 

(0.0375) 

0.141** 

(0.0616) 

-0.0614 

(0.173) 

0.108 

(0.0849) 

0.367*** 

(0.0414) 

lnseed*lnseed 

 

0.0610* 

(0.0311) 

0.230** 

(0.090) 

0.343 

(0.208) 

0.156 

(0.684) 

0.0411 

(0.0501) 

lnfertilizer* lnfertilizer 

 

0.151 

(0.102) 

0.383 

(0.269) 

0.698 

(1.026) 

0.201 

(0.401) 

0.772*** 

(0.136) 

lnmanure*lnmanure 

 

-0.0256 

(0.0270) 

0.00816 

(0.00768) 

0.273*** 

(0.0835) 

-0.0157 

(0.0120) 

0.00279 

(0.0122) 

lnhuman*lnhuman 

 

0.0774 

(0.0498) 

0.258 

(0.205) 

0.682 

(0.724) 

-0.986 

(0.756) 

0.226*** 

(0.0761) 

lnbullock*lnbullock 

 

0.0114 

(0.0154) 

0.00789 

(0.0133) 

0.238* 

(0.137) 

0.0165 

(0.0169) 

-0.00370 

(0.0147) 

lnmachine*lnmachine 

 

0.0377 

(0.0271) 

0.0261 

(0.0629) 

0.200*** 

(0.0693) 

0.0459 

(0.0964) 

0.0398 

(0.0381) 

Constant 

 

5.618*** 

(0.759) 

16.44*** 

(3.225) 

7.168 

(28.75) 

34.78* 

(19.42) 

10.41*** 

(1.600) 

sigma_u .31061006 .35792623 .18862918 .33882986 .25956232 

sigma_e .12267052 .11229609 .27315097 .1628793 .44604042 

Rho .86507213 .91038751 .32289851 .81229276 .25297169 

R-squared 0.509 0.604 0.516 0.680 0.848 

Standard errors in parentheses                                      *** p<0.01, ** p<0.05, * p<0.1 

This study is associated with unbalanced panel data used for 782 farm level data sets 

across 2004–2019 in all of India. In which farm data is divided into 291 paddy farm data, 203 

wheat farm data, 112 sugarcane farm data, and 176 maize farm data. The estimation findings 
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for the SF model of persistent technical efficiency and transitory technical efficiency for paddy, 

wheat, sugarcane, and maize are shown in Tables 3. Using Comprehensive Cost of Cultivation 

scheme (hereafter, CCCS) data for the entire period 2004–2019, efficiency estimates for 

persistent technical efficiency, transient technical efficiency, and overall technical efficiency 

are generated. The combined CCCS data results revealed that the mean persistent technical 

efficiency (0.99) and mean transient technical efficiency (0.77), both of which are assessed in 

Indian farm for crop productivity. Despite estimates of transient technical efficiency showing 

lower minimum values when compared to estimates of persistent technical efficiency and 

greater variation across farms, this reflects greater diversity and the potential for transient 

technical efficiency gains across farms (see Table 3 and Figure 1, 2, and 3). Relationships 

between agricultural efficiency and time periods are typically found in scatter plots. We are 

interested in learning what a reasonable vertical farm efficiency projection would be in these 

circumstances given a particular horizontal time period. Farm efficiency is broken down into 

three categories: overall technical efficiency, transient technical efficiency, and persistent 

technical efficiency. There is a connection between the combined technical efficiency of paddy, 

wheat, sugarcane, and maize.  

Generally speaking, mean overall technical efficiency was estimated to be 0.77. 

According to research by Kumbhakar, Lien, et al. (2014), persistent efficiency (0.71) for grain 

farms in Norway between 2004 and 2008 was worse than residual efficiency (0.89), 

demonstrating that addressing persistent inefficiency should occur first in order to prevent long-

term issues. Similar findings were exhibited for Swedish dairy farms between 1976 and 1988, 

when the transient technical efficiency (0.93) was higher than the persistent technical efficiency 

(0.90) (Kumbhakar and Heshmati, 1995). Instead, in situations of considerable chronic 

inefficiency for wheat production, a farm is expected to operate with a relatively high level of 

efficiency over time, barring changes in management or policy (Kumbhakar et al., 2015). It is 

critical from a policy perspective to differentiate between persistent and transient inefficiency 

since each policy has a unique set of consequences that may be employed to alleviate 

inefficiency.  The mean overall technical efficiency indicates joint effect of natural condition 

and farm management, is for paddy 0.916, for wheat 0.637, sugarcane 0.813, and for maize 

0.992. At the farm level, the combined mean overall technical efficiency of these four crops is 

0.77. Per hectare, wheat production has recorded the lowest mean overall technical efficiency 

(0.63), and maize has recorded the highest mean overall technical efficiency, 0.992.  

According to the estimated efficiency scores, the mean transient technical efficiency 

(0.93) for wheat is higher than the mean persistent technical efficiency (0.68), indicating more 

potential for production improvement by removing structural causes of technical inefficiency 

rather than focusing on the transient factors. This is an important discovery because unplanned, 

uncontrollable occurrences like pest outbreaks and severe weather, among other factors, may 

create transient inefficiency. From the above discussion, it is quite clear that the persistent 

technical efficiency shows favourable conditions for paddy, sugarcane, and maize, but wheat 

records the lowest mean persistent technical efficiency, 68%, meaning there is potential 

improvement at farm level by adaption of technological innovation and reorganization of farm 
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unit etc. It seems that there is no potential improvement in persistent technical efficiency of 

paddy, sugarcane, or maize farming, but a high chance in wheat farming. From our analysis, 

one thing is clear, transient technical efficiency is still challenged for crop production, 

especially in sugarcane production. Mean transient technical efficiency is reported to be very 

low at the national level (77% in crop production). Transient technical inefficiency in farming 

is a difficult task for farmers because it is associated with an uncontrollable effect, such as an 

unfavorable natural condition and soil quality at the farm level. So, from our perspective, the 

government should address the issue of transient technical efficiency to increasing per hectare 

crop production.  

Table 3: Estimation of Persistent technical, transient technical and overall technical 

efficiency 

 

Efficiencies variable Paddy Wheat Sugarcane Maize Combined 

Mean Persistent technical 

Efficiency 

.997 .682 .999 .994 .998 

Mean Transient technical 

Efficiency 

.919 .933 .814 .998 .772 

Mean Overall Technical 

Efficiency 

.916 .637 .813 .992 .77 

Scatter Plot: Figure 1 
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Scatter Plot: Figure 3 
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6. CONCLUSION: 
The above discussion is limited to farm input utilization. Efficiency estimation is divided into 

two categories: transient technical efficiency, which refers to natural farming conditions, and 

persistent technical efficiency, farm management, which indicates how efficiently input is used 

by the farmer at their decision-making unit. Natural conditions like soil quality, natural 

calamities, temperature, and annual rainfall are different across the country. Farm management 

is also associated with natural conditions regarding input utilization for different crops' 

production. From above, different climate conditions and soil quality also affect overall 

technical efficiency.  

We find that the mean transient technical efficiency (0.93) for wheat is higher than the 

mean persistent technical efficiency (0.68), indicating more room for production improvement 

by addressing structural reasons of technical efficiency rather than concentrating on the 

transient components. It is noteworthy that the mean overall technical efficiency score found 

for wheat (0.63) is lower than the corresponding score of paddy, sugarcane, and Maize, 0.91, 

0.81, 0.99, respectively.  Our findings advocate for a restructuring the policy of wheat farming 

towards more targeted initiatives, such as infrastructure improvement, extension, and, most 

importantly, innovation promotion, in order to support the reallocation of farm resources to 

more productive uses in response to new technologies. Additional research on additional 

phenomena, such as the outcomes of rural development programmes and policies, work by 

advisory services, etc., with a potential cumulative impact on farm efficiency, could be very 

important, especially for the appraisal of developing and implementing policies and upcoming 

changes to policy instruments. It may also be intriguing to observe how potential time-varying 

factors affect the time-varying transient technical efficiency component as this study only 

considered the persistent technical efficiency component. 
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