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Abstract 

This study examines how deep learning improves mechanical fault diagnostics. As equipment 

becomes more complex, diagnostic methods must improve. Intelligent Industrial Fault 

Diagnosis utilizing Sailfish Improved Inception with Residual Network (IIFD-SOIR) Model is 

introduced in this paper. The model performs signal portrayal, highlight extraction, and 

arrangement. Continuous Wavelet Transform (CWT) pre-processes the vibration signal in the 

proposed model. High-level features are generated using Inception with ResNet v2 feature 

extraction. A sailfish optimizer tunes Inception's ResNet v2 model parameters. A multilayer 

perceptron (MLP) classification method is used to accurately diagnose problems. Extensive 

experimentation ensures the model's gearbox and motor bearing dataset results. On the 

gearbox and bearing datasets, the IIFD-SOIR model had a higher average accuracy of 99.8% 

and 99.68%. Compared to other methodologies, the simulation showed that the proposed 

model performed well. Advanced deep learning approaches can improve mechanical system 

failure diagnostics, improving dependability and maintenance efficiency in industrial 

applications. 

Keywords: Fault diagnosis, Mechanical system, Deep learning, feature extraction, Sailfish 

Optimized Inception, Residual Network. 

1. INTRODUCTION  

As technology advances, mechanical equipment becomes more complicated, automated, and 

fast, making condition monitoring and defect identification more challenging [1]. Numerous 

sensors can get more fault information and further develop fault diagnosis; such countless sorts 

are utilized to gather information in the monitoring of huge scope mechanical gear, which 

produces different sorts and amounts of monitoring information [2]. Step by step instructions 

to utilize multisensor information to better hardware glitch diagnostics is an ongoing point [3]. 

Fault diagnosis requires information combination because of various information sources and 

types [4]. Choice level and element level combination fault diagnosis utilize numerous sensors 

[5]. DS proof hypothesis and fluffy choice hypothesis dominate choice level combination 

diagnosis [6]. These methods use a single sensor to identify equipment state, generate evidence, 

and make a final conclusion based on rules [7].  

1.1. Fault diagnosis  

Fault diagnosis involves obtaining and analysing equipment characteristic data to determine its 

status and abnormality [8]. Fault diagnosis technology has three main tasks: fault detection, 

which detects equipment failures; fault isolation, which locates and classifies problems; and 

fault estimate, which determines fault nature and intensity [9]. 

1.2. Fault diagnosis based on deep learning  

Deep learning is new machine learning research. It advances machine learning towards AI. 

Deep learning replicates complex functions, converts low-level input data features into high-
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level features, and discovers sample data laws with significant learning ability [10]. Features 

are the core focus of deep learning fault diagnosis technologies. With the invention and use of 

CNN, DBN, GAN, Transfer Learning, and other algorithms, deep learning-based defect 

diagnosis is becoming increasingly common [11]. 

 

2. LITERATURE REVIEW  

Zhao, Wang, and Hao (2019) [12] provide a revolutionary high voltage circuit breaker energy 

storage fault diagnosis method. The Journal of Vibroengineering describes how they use CNNs 

to create a characteristic matrix from sound and vibration signals. This method shows how deep 

learning can reliably diagnose high voltage circuit breaker failures. CNN can extract significant 

information from complex sound and vibration inputs, promising advanced fault identification 

in crucial electrical systems. 

Zhang, Miao, Zhang, and Wang (2018) [13] Using the grasshopper optimisation technique, 

introduce a parameter-adaptive Variational Mode Decomposition (VMD) method. Their 

Mechanical Systems and Signal Processing research analyses rotating machinery vibration 

signals. A novel vibration signal analysis method changes settings using the grasshopper 

optimisation algorithm. This method shows how adjusting VMD parameters to signal 

characteristics can improve fault diagnosis for rotating machinery, emphasising the relevance 

of signal processing optimisation for diagnostic accuracy and efficiency. 

Wang, Fu, Zhang, Gao, and Zhao (2019) [14] Multilevel information fusion for induction 

motor fault identification advances fault diagnosis. The IEEE/ASME Transactions on 

Mechatronics study examines integrating various levels of information to increase diagnostic 

accuracy. The authors use innovative methods to improve induction motor problem diagnosis 

by combining data from multiple sources. These findings emphasise the importance of 

information fusion in tackling induction motor defect detection's complexity. 

Saravanakumar, Krishnaraj, Venkatraman, Sivakumar, Prasanna, et al. (2021) [15] 

Hierarchical symbolic analysis and particle swarm optimisation are used to diagnose rotating 

machinery faults. Deep neural networks are integrated into a hierarchical symbolic analysis 

framework in Measurement. The defect diagnostic model is more efficient with particle swarm 

optimisation. This paper emphasises the need of combining symbolic analysis, optimisation, 

and deep learning for rotating machine failure diagnostics. The hierarchical approach shows a 

thorough understanding of fault detection and advances in integrating varied techniques for 

better diagnostic results. 

3. RESEARCH METHODOLOGY 

3.1. Proposed model 

FIG. 1 portrays the IIFD-SOIR model method. Information is gained, as displayed in the figure. 

The Continuous Wavelet Transform Scalogram (CWTS) model preprocesses and crops 

vibration signals. The SFO calculation changed Inception with ResNetv2 model is then carried 

out as a component extractor. Finally, MLP arranges absconds. 

 



 
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11,S. Iss  07, 2022 

 

275 

 

 
Figure 1: Block diagram of IIFD-SOIR model 

3.2. Data Collection  

Rotating machinery's performance depends on speed and load. Recording vibration signals at 

all speeds and loads is necessary for fault diagnosis. When signal frequencies don't match 

rotating frequencies, Continuous Wavelet Transform Spectrograms vary greatly. Vibration 

signals and rotating speed data are collected to address this. The DC component is removed 

and signals are collected extensively to train the system in training samples assuming constant 

rotating speed during stable operation. Speed-related CWTS fluctuations are noticeable 

without preprocessing. Resampling with a virtual frequency (VSF) eliminates rotating speed's 

effect on CWTS, assuring sample uniformity. 

3.3. Data Preprocessing 

The DC module is removed by removing the mean value from the vibration signal to improve 

error analysis. Virtual resampling frequency (VSF) is used because operational changes affect 

rotating speed. The VSF, a multiple (q) of the spinning speed, is constant for each training 

sample. This tackles the speed-related diversity in CWTS outcomes. Resampling creates a 

standardised dataset, x(k)(k = 1, 2,...,m), for each rotor revolution. A virtual resampling 

frequency (fd = qfm) provides a consistent representation for fault diagnosis and investigation. 

In summary, data preparation eliminates the DC component and uses virtual resampling to 

maintain uniformity across rotating speeds. 

3.4. Sailfish Optimizer Based Parameter Optimization 

The Inception with ResNet v2 model's part size, channel count, stowed away hub count, and 

punishment coefficient vigorously influence results. Selecting the right settings is time-

consuming and difficult. The ResNet v2 model uses the SFO algorithm to select Inception's 

optimal settings. SFO is a population-based meta-heuristic technique based on a group of 

hunting sailfishes' attack-alternation concept. SFO algorithm workflow is shown in Fig. 2. 

. 

 
Figure 2: Flowchart of SFO algorithm 
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3.5. MLP Based Classification 

An NN approach with numerous hidden layers, MLP links neurons between layers. This 

method's structure is shown in Fig. 3. Experience and experimentation determine the parameter 

selection of newly introduced MLP. 

. 

 
Figure 3: General structure of MLP 

 

3.6. Data Implementation 

Proposed model performance is simulated using Python. Automotive gearbox and bearing 

failure datasets were used to test the model's fault class label detection. The first dataset 

contains 7 health statuses, including outer race bearing, small chipped gear, missed tooth gear, 

and compound faults. 1300000 samples are grouped into 200 0.5-s instances per class label. In 

addition, 400 sample examples are obtained for each health status at different speeds. Final 

dataset has 3100 sample cases. Normal and fault data are in the second dataset. The bearing 

flaws are inner race (IF), outer race (OF), and ball. Thus, 10 bearing health statuses under 

different loads exist. WT transforms 3000 data points per sample into a time-frequency 

representation. Under load, each health status has 60 instances. To test the algorithm, 3400 

samples were collected. 

 

4. RESULTS AND DISCUSSION 

Table 1 shows the IIFD-SOIR model's fault class accuracy analysis on the Gearbox dataset. 

 

Table 1: Gearbox dataset accuracy examination of IFD-SOIR technique 

Number 

of Classes 

FFT-KNN FFT-SVM FFT-

DBN 

FFT-SAE CNN CNN2 IIFD-SOIR 

1 85.46% 100% 98.92% 99.99% 100% 100% 100% 

2 93.48% 100% 98.89% 100% 100% 100% 100% 

3 99.73% 99.91% 99.52% 99.66% 98.60% 98.02% 99.36% 

4 100% 100% 99.51% 100% 100% 99.77% 99.87% 

5 88.09% 99.92% 99.43% 100% 100% 100% 100% 

6 69.40% 97.24% 96.52% 98.26% 99.78% 97.76% 99.28% 

7 68.43% 88.70% 95.25% 96.83% 89.81% 92.53% 98.77% 
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Table 2 shows IIFD-SOIR fault class accuracy analysis on the Bearing dataset. 

Table 2: Bearing dataset IFD-SOIR accuracy analysis 

Number of 

Classes 

FFT-

KNN 

FFT-

SVM 

FFT-DBN FFT-SAE CNN CNN2 IIFD-

SOIR 

1 99.02% 100% 100% 100% 99.79% 99.43% 99.84% 

2 97.74% 96.58% 98.66% 98.26% 95.89% 93.26% 99.12% 

3 99.02% 100% 99.96% 100% 100% 100% 100% 

4 95.41% 99.59% 98.81% 98.40% 99.28% 99.01% 99.47% 

5 97.58% 99.32% 98.66% 98.25% 99.74% 97.80% 99.83% 

6 98.55% 92.54% 97.80% 97.34% 99.11% 99.12% 99.58% 

7 98.99% 100% 99.53% 99.45% 100% 100% 98.77% 

8 95.51% 95.33% 95.24% 95.17% 98.22% 94.20% 98.82% 

9 99.02% 100% 99.78% 100% 99.96% 99.96% 99.98% 

10 97.63% 87.82% 96.21% 97.51% 99.96% 99.96% 99.99% 

Table 3 and Figs. 4 and 5 show the IIFD-SOIR model's average training and testing accuracy 

on the gearbox and Bearing dataset. 

Table 3: An average of training and method testing results 

Methods 

  

Gearbox dataset  Bearing dataset  

(Training) (Testing) (Training) (Testing) 

FFT-KNN 90.86% 86.37% 98.30% 97.85% 

FFT-SVM 98.60% 97.97% 98.77% 97.13% 

FFT-DBN 100% 98.29% 99.48% 98.47% 

FFT-SAE 100% 99.25% 99.13% 98.24% 

CNN 99.35% 98.32% 99.63% 99.20% 

CNN2 98.89% 98.31% 99.14% 98.10% 

IIFD-SOIR 100% 99.62% 99.85% 99.67% 

 

 
Figure 4: Average IIFD-SOIR model accuracy on gearbox dataset 
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Figure 5: Average IFD-SOIR model accuracy on bearing dataset 

5. CONCLUSION 

Deep learning in mechanical system deformity diagnostics is a significant turn of events. This 

paper made an IIFD-SOIR model to distinguish rotating machinery issues. The information 

collecting process begins first. Then, at that point, the CWTS model preprocesses and crops 

vibration signals. SFO calculation changed Inception with ResNet v2 model is then used to 

extricate highlights. The SFO calculation tunes Inception's ResNet v2 model boundaries. 

Finally, MLP arranges surrenders. Broad trial and error guarantees the IIFD-SOIR model's 

gearbox and engine bearing outcomes. The IIFD-SOIR model has a higher typical exactness of 

99.6% and 99.64% on the gearbox and bearing datasets, separately. Rotating machinery defects 

can be diagnosed using the IIFD-SOIR model. Future real-time industries can use the IIFD-

SOIR paradigm to diagnose issues. This study shows that sophisticated deep learning methods 

can improve mechanical system problem diagnostics. The findings increase mechanical system 

maintenance dependability and efficiency and advance scientific understanding of these 

methods. 
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