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Abstract: 

The conventional wisdom acknowledges the universal approximation capabilities of single-

hidden-layer feedforward networks (SLFNs) employing additive models. Nevertheless, the 

efficiency of training such models was notably sluggish until the advent of the extreme learning 

machine (ELM) introduced by Huang et al. Pre-ELM, gradient-based algorithms were the go-

to for efficiently training SLFNs, necessitating iterative application until a satisfactory model 

was achieved. This slow convergence hindered the widespread adoption of SLFNs, despite 

their generally commendable performance. The introduction of ELM transformed SLFNs into 

a viable choice for rapidly classifying a large number of patterns. Traditionally, hidden nodes 

were randomly initiated and fine-tuned (though not universally in all approaches). This paper 

proposes a deterministic algorithm that initiates each hidden node with an additive activation 

function, optimizing it for training with ELM. The algorithm leverages information obtained 

from principal components analysis to tailor the hidden nodes, significantly reducing 

computational costs compared to subsequent ELM improvements while surpassing their 

performance. 
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Introduction: 

Artificial neural networks (ANNs) primarily revolve around single-hidden-layer feedforward 

networks (SLFNs). SLFNs, characterized by lacking side or back connections between nodes, 

have prompted the development of numerous training techniques for adjusting their parameters 
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and structure. Among the well-known architectures is the multilayer perceptron (MLP), 

typically consisting of sigmoid nodes and commonly trained using the backpropagation 

algorithm (BP). While this architecture can be trained using various algorithms, the most 

prevalent ones are categorized as either gradient-based or heuristic. Both types share common 

challenges, including difficulty in handling large datasets and sluggish convergence under such 

circumstances. These characteristics contribute to the slow construction of SLFNs, resulting 

from the need to adjust numerous parameters using time-consuming algorithms that must be 

iteratively applied to attain a suitable model. Consequently, despite their overall commendable 

performance, SLFNs are not as widely used as they could be. The extreme learning machine 

(ELM), an algorithm that significantly reduces the traditional computational time required for 

SLFN training using gradient-based approaches. ELM streamlines the training process into two 

steps: randomly configuring the hidden layer and fitting a linear combination using the Moore-

Penrose generalized inverse matrix. This algorithm's rapidity and validated performance make 

it a noteworthy advancement. Following the introduction of ELM, various approaches aimed 

to enhance its original version's performance, particularly in selecting the number of hidden 

nodes and rapidly fitting their parameters. Incremental extreme learning machine (I-ELM) 

variants which randomly initializes hidden node weights and ranks features resulting from 

applying hidden node transformations on the training set. 

Building on these advancements, this paper introduces the robust principal component 

analysis extreme learning machine (PCA-ELM) algorithm. Unique features include 

deterministically determining the number of hidden nodes and their weights based on 

information retrieved from a PCA analysis of the training set. Notably, the proposed algorithm 

is distinct from applying the original ELM over covariates obtained from a PCA analysis. In 

the realm of high dimensionality, where the curse of dimensionality poses a challenge, the 

objective of Principal Component Analysis (PCA) is to mitigate this issue by diminishing the 

dimensionality of the data while retaining a substantial portion of the original dataset's 

variation. PCA facilitates the computation of a linear transformation that effectively maps data 

from a space with high dimensions to one with fewer dimensions. The goal is to minimize the 
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following expression to ensure the preservation of as much information as possible:

 

Fig 1.1: Working process of Ensembled PCA-ELM 

 

The PCA method lends itself to a geometric interpretation by projecting data along directions 

where the data exhibits the most variation. These directions are determined by the eigenvectors 

of the covariance matrix corresponding to the largest eigenvalues. The magnitude of these 

eigenvalues reflects the variance of the data along the associated eigenvector directions. Key 

properties of PCA include: 

- The new variables resulting from PCA are uncorrelated. 

- The covariance matrix encapsulates only second-order statistics among vector values. 

- As the new variables are linear combinations of the original variables, interpreting their 

meaning can be challenging. 

It's essential to recognize certain assumptions underlying PCA: 

- Linearity: Patterns are assumed to be linear combinations of a basis. Non-linear methods like 

kernel PCA address this assumption. 

- Principal components with larger associated variances signify meaningful structures, while 

those with lower variances denote noise. 

- The principal components are orthogonal, allowing PCA to be solvable using linear algebra 

decomposition techniques such as singular value decomposition (SVD). 

The original ELM algorithm advocates for and validates the use of neural networks 

with sigmoid nodes in a randomly fitted hidden layer, transforming the feature space into a new 

one. In contrast, PCA represents an orthogonal transformation of initial axes into new ones, 
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maximizing variance. To illustrate PCA analysis, consider two well-defined clusters in a 2D 

space. These clusters represent two classes in a classification problem, with patterns near the 

cluster boundaries overlapping in their projections over the two axes. The initial axes can be 

rotated using PCA, resulting in two new clusters. This rotation optimally captures the variance 

in the data and aids in the differentiation of patterns, particularly those near the cluster 

boundaries. 

 

Fig 1.2: Graph of different activation functions used for ensembled procedure. 

 

The proposed PCA-ELM method is subjected to a comparative analysis with other ELM 

algorithms employing various artificial neural network (ANN) models. Specifically, our 

approach is contrasted with the following: 

Original Extreme Learning Machine (ELM):  

For ELM (RBF), centers are randomly selected from data points, and widths are 

randomly drawn between the 20th and 80th percentiles of the distance distribution of the input 

space. ELM differs from ELM with the Radial basis function by measuring the distance of each 
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pattern to its centroid and weighting the final output by its radius. The number of nodes (m) in 

the hidden layer is determined through cross-validation on the training set, exploring values. 

Optimally Pruned Extreme Learning Machine (OP-ELM):  

In OP-ELM (RBF), centre and width values are initialized similarly to the ELM (RBF) 

algorithm. The number of nodes (m) in the hidden layer is fixed at 100, as OP-ELM 

automatically prunes useless neurons. 

 

Conclusion: 

The PCA-ELM algorithm, which we propose, stands out as a swift and resilient ELM-based 

methodology. Our innovation involves estimating hidden node parameters by leveraging 

information extracted from PCA applied to the training set, and the determination of output 

node parameters is achieved using the Moore-Penrose generalized inverse. Through rigorous 

experimentation conducted on fifteen widely recognized datasets, our algorithm has been 

thoroughly validated. The obtained results underwent meticulous statistical scrutiny employing 

Bonferroni–Dunn, Nemenyi, and Friedman tests. This rigorous statistical analysis 

unequivocally demonstrates the superior performance of our approach compared to previous 

methodologies. Notably, our algorithm introduces a crucial enhancement by eliminating the 

random initiation of hidden neurons, contributing to its robustness and reliability. 

 

References: 

1. Asuncion A, Newman D (2007) UCI machine learning repository. 

http://www.ics.uci.edu/~mlearn/ MLRepository.html. Accessed 8 Sept 2007 

2. Cao J, Lin Z, Huang G (2011) Composite function wavelet neural networks with differential 

evolution and extreme learning machine. Neural Process Lett 33(3):251–265 

3. Chen L, Zhou L, Pung HK (2008) Universal approximation and qos violation application of 

extreme learning machine. Neural Process Lett 28(2):81–95 

4. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–56 

5. Feng G, Huang GB, Lin Q, Gay R (2009) Error minimized extreme learning machine with 

growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357 

6. Friedman M (1940) A comparison of alternative tests of significance for the problem of m 

rankings. Ann Math Stat 11(1):86–92 

7. Hochberg Y, Tamhane A (1987) Multiple comparison procedures. Wiley, New York 



IJFANS International Journal of Food and Nutritional Sciences 

 

ISSN PRINT 2319 1775 Online 2320 7876 

                                          © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 4, 2019 

257 | P a g e  

Research paper 

8. Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 

70(16–18):3056–3062 

9. Huang GB, Chen L (2008) Enhanced random search based incremental extreme learning 

machine. Neurocomputing 71(16–18):3460–3468 

10. Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental 

constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17:4 

11. Huang GB, Li MB, Chen L, Siew CK (2008) Incremental extreme learning machine with 

fully complex hidden nodes. Neurocomputing 71(4–6):576–583 

12. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and 

multiclass classification. IEEE Trans Syst Man Cybern B 42(2):513–529 

13. Huang GB, Zhu Q, Siew C (2006) Extreme learning machine: theory and applications. 

Neurocomputing70(1–3):489–501 

14. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme 

of feedforward neural networks. IEEE Int Conf Neural Netw Conf Proc 2:985–990 

15. Jaeger H (2001) The “echo state” approach to analysing and training recurrent neural 

networks. GMD Rep 148:1435–2702 

16. Kim J, Shin H, Lee Y, Lee M (2007) Algorithm for classifying arrhythmia using extreme 

learning machine and principal component analysis. In: 29th Annual international conference 

of the IEEE, engineering in medicine and biology society, 2007. EMBS, New York, pp 3257–

3260 

17. Mich Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally 

pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162 

18. Miche Y, Sorjamaa A, Lendasse A (2008) Op-elm: theory, experiments and a toolbox. In: 

Artificial neural networks—ICANN 2008, lecture notes in computer science, vol 5163. 

Springer, Berlin, pp 145–154 

19. Rong HJ, Ong YS, Tan AH, Zhu Z (2008) A fast pruned-extreme learning machine for 

classification problem. Neurocomputing 72(1–3):359–366 

20. Sánchez-Monedero J, Gutiérrez PA, Fernández-Navarro F, Hervás-Martínez C (2011) 

Weighting efficient accuracy and minimum sensitivity for evolving multi-class classifiers. 

Neural Process Lett 34(2):101–116 

21. Schlkopf B, Smola AJ, Müller KR (1999) Kernel principal component analysis. In: 

Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 327–352 


