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Abstract 

Android produces UI by producing and presenting a frame from a mobile app on the screen. If 

the app's UI rendering is slow, the system is forced to skip frames. When this occurs, the user 

notices a repeated flicker on their screen, which is known as Jank. Jank issues can manifest in 

various forms, causing disruptions such as unstable frame rates, heightened latency, 

AppDeadlineMissing, and BufferStuffing. BufferStuffing occurs when the app runs beyond its 

expected duration, leading to jank. To quantify this issue, we determine the total time taken by 

the app frame, commencing with the choreographer wake-up as the starting point and 

concluding with max(GPU, post time) as the endpoint. Post time represents when the frame was 

dispatched to SurfaceFlinger. Notably, due to the parallel operation of the GPU, the GPU can 

complete its task after the post time. This situation is more of a state than a true jank occurrence 

and typically arises when the app continually dispatches new frames to SurfaceFlinger before 

the previous frame has been presented. This continuous influx of frames leads to the stuffing of 

the internal Buffer Queue with frames yet to be presented, hence the term "Buffer Stuffing." 

These additional buffers in the queue are presented one after the other, resulting in increased 

latency. This can eventually reach a point where there are no more buffers available for the app 

to utilize, leading to a blocking wait during dequeuing. Importantly, even if the actual work 

performed by the app remains within the deadline, the stuffed nature of frames leads to their 

presentation at least one vsync late, introducing elevated input latency. While the visual 

appearance of frames may remain relatively smooth in this state, the late presentation is 

associated with increased input latency. In this work, the LSTM Model(Long Short Term 

Memory) was used for the detection of Jank. LSTMs provide us with a large range of 

parameters such as learning rates, and input and output biases. Hence, no need for fine 

adjustments. Experimental result shows that the LSTM Model was able to predict the frame 

drop with an efficiency of 98% thereby enhancing the overall user experience. 
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1. Introduction 

Many factors influence the cause of jank during UI rendering which can be categorized as 

internal factors like large inflates, animations, layouts, etc., and external factors like CPU/GPU, 

Battery, Touch inputs(by user), etc. A sophisticated Learning-based model is required to predict 

the jank occurrence in real time for smooth performance, To avoid jank and sluggish 

responsiveness when an Application is drawing to the screen by predicting the next frame drop 

and taking corresponding actions. This work aims to develop a learning model to predict the 



                  IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
                                             Research paper       © 2012 IJFANS. All Rights Reserved,  Volume 11, Sp.Iss  6 , 2022 

 

270  
  

next frame drop that can occur on a smartphone while the user is using the application. This 

model works as a Generic model for all the scenarios (scroll, app switching). 

1.2 Type of janks    

AppDeadlineMissed 

A jank was caused by the application running longer than planned. 

To determine the length of the application, wakeup is used as the start time, 

and maximum (GPU, streaming time) is used as the end time. 

The frame's post time is when it was dispatched to SurfaceFlinger. Given that the 

GPU often works concurrently, there's a chance that it experienced unexpected delays in 

completing its tasks. 

BufferStuffing: 

This is more of a situation than a performance issue. It happens when an 

application continually sends new frames to SurfaceFlinger before the previous frame 

has a chance to be shown. The term "buffer stuffing" describes the situation where the 

core buffer queue becomes overwhelmed with unprocessed buffers that rarely get 

displayed. 

SurfaceFlingerCpuDeadlineMissed 

SurfaceFlinger is anticipated to be completed within the time frame specified. 

SurfaceFlingerCpuDeadlineMissed is the jank if the main thread operated for a 

prolonged period. The amount of CPU time devoted to SurfaceFlinger's main thread. If 

device composing was employed, the full composition period is included. This includes 

the duration required for generating the draw calls and transferring them by hand. the 

frame off to the GPU if GPU composition was employed. 

SurfaceFlingerGpuDeadlineMissed 

SurfaceFlinger's main thread's CPU and GPU composition times combined took 

longer than anticipated. Here, the CPU time would still have been inside the allotted 

period, however, due to the GPU task not being finished promptly, the frame was 

postponed to the subsequent vsync cycle. 

  DisplayHAL 

When SurfaceFlinger completes its task and promptly sends the frame to the HAL, 

the situation is known as a "DisplayHAL jank," However, the frame is not shown during 

the vsync event. It was displayed on the following vsync. It's possible that SurfaceFlinger 

did not provide enough time for the HAL's work, or it's possible that the work of the HAL 

was delayed. 

This article also provides a thorough overview of the various techniques and strategies 

used in developing on-device efficient prediction models for jank detection, highlighting 

CNN with LSTM  as a potential solution. It examines the benefits of CNNs in capturing 

intricate patterns in user interactions and system behaviors, with an emphasis on their 

ability to provide exact and timely jank predictions. 

 CNNs can easily incorporate query features and item features (due to the flexibility 

of the input layer of the network), which can help capture the specific interests of a user 

and improve the relevance of recommendations. The LSTM model was forecasted with the 

time-series log file data for a long lead period for the various applications of Android 

mobile phones. 



                  IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
                                             Research paper       © 2012 IJFANS. All Rights Reserved,  Volume 11, Sp.Iss  6 , 2022 

 

271  
  

The model architecture determines the complexity and expressivity of the model. 

By adding hidden layers and non-linear activation functions (for example, ReLU), the 

model can capture more complex relationships in the data.[4,5. Expanding the parameter 

count generally results in a more challenging and costlier model training process. 

 

 

 2. Survey of literature 

 2.1 Mobile Jank Prediction: 

The present disclosure relates to methods and apparatus for frame processing. The 

apparatus can determine a current frame offset duration when a current frame 

rendering completion time is after the first VSYNC time. In some aspects, the current 

frame offset duration can be equal to a difference between the first VSYNC time and 

the current frame rendering completion time. The apparatus can also determine 

whether the sum of a previous frame GPU execution duration and the current frame 

offset duration is less than or equal to a first VSYNC period. In some aspects, the first 

VSYNC period can begin at the first VSYNC time and end at a second VSYNC 

time.[9] Additionally, the apparatus can execute a current frame based on the 

determination of whether the sum of the previous frame GPU execution duration and 

the current frame offset duration may be equal or low to the first VSYNC period. 

2.2 LSTM Sequence Generation: 

. Recurrent Neural Networks (RNNs) have proven to be effective in addressing tasks 

involving sequential predictions. This work aims to create a generative model for text. 

Even though, RNN has its limitations such as vanishing and exploding gradient descent 

problems, and inefficiency in keeping track of long-term dependencies. To overcome 

these drawbacks, Long Short Term Memory (LSTM) has been a path-breaking solution 

to deal with sequential data and text data in particular. This paper delineates the design 

and working of text generation using word-level LSTM-RNN.[1] 

The LSTM neural network is an Encoder-Decoder built on a bidirectional 

multilayer architecture where the input sequence to the encoder is a list of user dialogue 

acts and the decoder output sequence is a list of system dialogue acts. All dialogue acts 

are defined at the intent level and are extracted from the Town Info corpus for tourist 

information provided by the FP7 Classic Project funded by the European Union. In their 

study, the LSTM configuration they proposed was pitted against a fully connected 

Hidden Markov Model (HMM) architecture. In this HMM model, user dialogue acts 

serve as states, and system dialogue acts serve as observations [11]. Following a series 

of diverse experiments, the findings collected from the analysis of the Town Info corpus 
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unequivocally demonstrated that the LSTM-based system surpassed the HMM-based 

system in terms of performance. 

 

3. Methodology 

 

    Data Collection and Data PreProcessing: 

 

The dataset containing the time stamps of several frames was taken from our mentors 

and we used the pandas library to pre-process the data, There are a couple of problems 

with the raw data. Firstly, the Time and Amount columns exhibit significant variability, 

making them unsuitable for direct use. As a solution, omit the Time column, as its 

meaning is unclear, and apply a logarithmic transformation to the Amount column to 

narrow its range. 

 

 

Fig1.  junk frames in Android mobile 

Building Model: 

 

Built a stacked LSTM model for the detection of jank, Stacking LSTM to allow for 

greater model complexity. In the case of a simple feedforward net, we stack layers to 

create a hierarchical 

feature representation of the input data to then use for some machine learning task. The 

same applies to stacked LSTMs. At every time step an LSTM, besides the recurrent 

input. If the input is already the result of an LSTM layer (or a feedforward layer) then the 

current LSTM can create a more complex feature representation of the current input. 

  Train and Test: 

 

Split the dataset into train, validation, and test sets. The validation set is used 

during the model fitting to evaluate the loss and any metrics; however, the model 

does not fit with this data. The test set is completely unused during the training 

phase and is only used at the end to evaluate how well the model generalizes to 

new data. This is especially important with imbalanced datasets where overfitting 

is a significant concern due to the lack of training data. 

https://developers.google.com/machine-learning/crash-course/generalization/peril-of-overfitting
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 Predict: 

After testing the model with 20% of the data, using the same testing data to predict 

the frame drop. Compared the results between the LSTM model and t h e  DNN 

program, from which 94% of the prediction was accurate. 

 

To predict the frame drop we used two different methods DNN  and LSTM.Used 

the Pandas Python library to download CSVs into a Pandas Data Frame. Pandas 

has many helpful utilities for loading and working with structured data.  

The use of the LSTM (Long Short Term Memory) Model helps in detecting jank 

by predicting frame drops in real time. Jank refers to the repeated flickering on the 

screen caused by slow UI rendering. When the system is forced to skip frames due 

to slow rendering, it leads to problems like unstable frame rate and increased 

latency. 

The LSTM model, a variant of recurrent neural networks (RNNs), is tailored for 

processing sequential data and capturing extended temporal relationships. In the 

context of jank detection, the LSTM Model is trained on a dataset containing time 

stamps of frames. It learns the patterns and characteristics of frames that are likely 

to be dropped or cause jank. 

The LSTM model uses system features like CPU usage, memory usage, and frame 

rate to forecast frame drop occurrences. It considers the historical patterns in the 

input data sequence and adjusts its internal state by incorporating both the current 

input and prior states.[2,6] 

 

These three parts of an LSTM cell are known as gates. The first part is called 

Forget gate, the second part is known as the Input gate and the last one is the 

Output gate. 

Fig 2 LSTM architecture 

 

 

 

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
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3. 2 Algorithm: 

 

 

Step1:Input Data Representation  

   Let X(t) be the input data at time step t, representing the features extracted from the s    

system (e.g., CPU usage, memory usage, frame rate). 

 Let Y(t) be the output variable at time step t, representing the presence or absence of 

jank (1 for jank, 0 for non-jank). 

Step 2: DNN Model: 

 Apply a DNN model to process the data input X(t) at each time step t  

     The DNN model can have multiple hidden layers with appropriate activation functions 

(e.g., sigmoid, ReLU) to capture complex relationships between the input features. 

Step 3: LSTM Model: 

 Apply an LSTM model to capture temporal dependencies in the input data sequence. 

The LSTM model takes the output of the DNN model at each time step t as input and 

updates its internal state based on the current input and the previous state. The LSTM 

model can incorporate multiple layers of LSTM units, each equipped with suitable 

activation functions such as sigmoid and tanh, enabling it to acquire and model long-term 

dependencies in data. 

Step 4: Output Layer: 

 Apply a fully connected layer with a suitable activation function (e.g., sigmoid, softmax) 

to obtain the predicted probability of jank at each time step t. 

Step 5: Loss Function: 

Define a suitable loss function (e.g., binary cross-entropy) to assess the difference between 

the predicted probability and the actual jank label Y(t) at each time step t. The 

dissimilarity between the anticipated output and the realized output is quantified by a loss 

function, such as mean squared error or cross-entropy. 

Step 6: Backward Propagation:  

Compute the gradients of the cost function concerning the model parameters (including 

both DNN and LSTM parameters) using backpropagation through time. Update the 

model parameters using an optimization algorithm (e.g., gradient descent, Adam) to 

minimize the cost function. 

 

 

4. Experimental Results and Discussion 

 

We used the dataset containing information about all the processes of GPU and the 

data such as unknown delay duration, Input handling duration, Animation   

Duration,  Layout measure duration, and so on. To find the best model to predict 

the jank frame, hyperparameters of both DNN and CNN are modified and the 

corresponding performances are tabulated. 



                  IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
                                             Research paper       © 2012 IJFANS. All Rights Reserved,  Volume 11, Sp.Iss  6 , 2022 

 

275  
  

 4.1 Data set 

 

 

Fig 3: Sample data 

 

 

The total size of the data set DS_MB is 2000 instances gathered from the devices. Another 

data set DS_AD from the Android devices contains 4200 instances. The data is divided into 

train and test data sets after preprocessing and normalization. 60 time stamps are used for the 

LSTM model. 

 

Table 1:Configuration of data sets 

 

  Train test 
DS_MB 1400 600 
DS_AD 2940 1260 

4.2 Configurations of Convolutional Neural Networks :  

The CNN model is built using LENET as the base model. The learning rate is initialized as 

0.01. The number of epochs is set to 150 for the CNN  model.  Stochastic Gradient Descent 

(SGD) is employed to optimize the model's loss function, while 20% of the training data is 

designated for validation purposes. Table 2 represents the results produced by the system with 

CNN and LENET  as a classifier. 

 Table 2:Accuracy of the CNN   model 

model Optimizer accurac
y 

CNN ADAGRADE 84.5 
CNN SGA 85.8. 
LENET ADAGRADE 85.2 
LENET SGA 87.4 

Table 3:Confusion matrix for the CNN  model 

 

 Dropped Not 
Dropped 

Dropped 1088 260 
Not Dropped 52 600 

4.2 Configurations LSTM  Neural Networks :  

The RNN  and LSTM models are defined using 30 and 60 time stamps. The learning rate is 

initialized as 0.01. The number of epochs is set to 150 for the CNN  model The SGD is used 



                  IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
                                             Research paper       © 2012 IJFANS. All Rights Reserved,  Volume 11, Sp.Iss  6 , 2022 

 

276  
  

to optimize the loss function of the model 20% of training data is considered as the validation 

data.   

Table 4  represent the results produced by the system with RNN and LSTM  as classifier by   

varying time stamps 

 

 Table 4:Accuracy of the CNN   model 

model timestamps accurac
y 

LSTM 60 94.7 
LSTM 30 92.6 
RNN 60 88.5 
RNN 30 86.4 

 

 

 When comparing the experimental findings, it becomes evident that the LSTM Model 

19 exhibits exceptional efficiency in predicting frame drops, achieving an accuracy rate 

of 94.7%. It is represented in table 5. This prediction capability enhances the overall 

user experience by allowing for proactive measures to be taken to avoid jank and ensure 

smooth performance during UI rendering on Android devices. 

 

Table 5: comparison of the models  
 

 Accuracy Precision Recall 
CNN 85.8 85.8 82.4 
RNN 88.5 86.5 85.8 

LSTM 94.7 94.1 93.8 

 

 

 

  

5. Conclusions 

This research work focuses on the development of on-device prediction 

models for efficient jank detection, leveraging Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) networks. The study explores the 

application of these deep learning techniques in identifying and mitigating jank 

issues, with an emphasis on optimizing real-time performance and resource 

efficiency. The research aims to enhance the overall user experience by addressing 

jank-related problems in mobile applications. The experimental results indicate that 

the LSTM Model excels in accurately predicting frame drops, achieving an 

impressive accuracy rate of 94.7% 

This prediction capability enhances the overall user experience by allowing 

for proactive measures to be taken to avoid jank and ensure smooth performance 

during UI rendering on Android devices. 
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