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Abstract: greenhouse studies were embraced to evaluate the 

viability of chosen biocontrol specialists in blend with fungal 

disease against damping-off and shrink microbes of various crops. 

Pythiumsp and Fusariumsp were found in infected plants and soil 

samples to be the wilt pathogens that caused various plants crops 

to wilt. They were found to cause 50-85% seedling loss in plants 

crops in a pathogen city test carried out in a greenhouse. The 

biocontrol agents were tested for their ability to promote growth 

and prevent disease in a greenhouse setting. Seedling vigor, total 

biomass, disease incidence, and biocontrol efficiency were all 

higher when Azotobacter chroococcum, Bacillus megaterium, 

Pseudomonas fluorescens, Bacillus subtilis, and Trichoderma 

harzianum were utilized in combination. 

 
 

 
Index Terms—: Index Terms: microbial consortia, 

biocontrol agent, management, fungal disease, etc. 
 
I INTRODUCTION: 

 
A microbial consortium or microbial community, is two or 

more bacterial or microbial groups living symbiotically. 

Consortiums can be endosymbiotic or ectosymbiotic, or 

occasionally may be both. Microbial co-cultures (consortia) 

are two or more interacting microbial populations that can be 

found in many diverse environmental niches. 
 

 
 
Microbial consortia play a vital role in soil management and 

nutrient mobilization, in disease prevention and plant defense, 

in management of stress tolerance, in postharvest fruit 

management, and in overall ecosystem management. The 

National Cancer Institute's (NCI) Epidemiology and Genomics 

 
Research Program (EGRP) defines a consortium as a group of 

scientists from multiple institutions who have agreed to 

participate in cooperative research efforts involving activities 

such as methods development and validation, pooling of 

information from. 

 
Soil Drenching: AMC can be mixed with water @ 20 g/ lit and 

then applied near to the root zone on the 10th day after 

transplanting. Main field application; For the main field 

application of one acre of land, five kg of AMC can be mixed 

with 500 kg of FYM and applied near the root zone of 

standing crop. 
 
The major forms used in microbial control are (a) liquid and 

gaseous chlorine and (b) hypochlorite. Treatment of water 

with chlorine destroys many pathogenic vegetative 

microorganisms without unduly affecting its taste. 

 
Biological Control Agent (BCA) can be defined as the use of 

natural efficient strains of any microorganisms or modified 

organisms that reduce the incidence or severity of diseases 
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caused by plant pathogens. It exhibits an antagonistic activity 

toward a particular phytopathogen (Beneduzi et al., 2012). The 

biocontrol agents protect plants from their natural enemies like 

parasites from predation, etc. They help in controlling the 

infestation of plant pests such as weeds, nematodes, insects, 

and mites. The biological control agents are specific to 

harmful organisms and do not kill useful organisms present in 

the soil. Microbial biological control agents (MBCAs) are 

applied to crops for biological control of plant pathogens 

where they act via a range of modes of action. Some MBCAs 

interact with plants by inducing resistance or priming plants 

without any direct interaction with the targeted pathogen. 

 

The four major ways are by what has been called Augmentive 

Biological Control, Classical Biological Control (otherwise 

known as Inoculative Biological Control), Inundative 

Biological Control, and Manipulative Biological Control. 

 
 
 

2. RELATED WORK: 

 
They are Alternaria, Aspergillus, Candida, Fusarium, 

Penicillium, Pichia, Talaromyces, Trichoderma, and 

Verticillium. Trichoderma is the most prominent genus 

comprising 25 BCAs and they are widely used in controlling 

plant diseases caused by fungi. Most frequently species of 

Bacillus, Pseudomonas and Trichoderma are used for 

biological control of fungal pathogens. Among them, one of 

the fungal biocontrol agents used in this study is Trichoderma 

species. They are common saprophytic fungi found in almost 

any soil and rhizospheric microflora. 
 
Fungicides are pesticides that kill or prevent the growth of fungi 

and their spores. They can be used to control fungi that damage 

plants, including rusts, mildews and blights. They might also be 

used to control mold and mildew in other settings. 
 
Fungal biocontrol agents (BCAs) do not cause any harm to the 

environment, and they generally do not develop resistance in 

various types of insects, pests, weeds, and pathogens due to 

their complex mode of action. They have been proved to be an 

alternative against the undesirable use of chemical pesticides. 
 

 
The principal attributes of an effective biological control agent 

are: efficient searching ability, high parasitism or predation 

rate, high reproductive potential, minimal handling time, 

ability to survive at low prey densities and ability to adapt to a 

wide range of environmental conditions. 

 
 
 
 

 

3. MICROBIAL CONSORTIA AS A 

BIOCONTROL AGENT FOR EFFECTIVE 

MANAGEMENT OF FUNGAL DISEASES 

IN GLYCINE MAX L. 

 
In vitro, thirty bacteria and six Trichoderma isolates were isolated 

from fertile agricultural soil and tested for their antagonistic 

activity against phytopathogens like Sclerotinia sclerotiorum and 

Macrophomina phaseolina. There were varying degrees of 

animosity between the various isolates. As biocontrol agents, the 

three most antagonistic bacteria, Pseudomonas aeruginosa 

(MBAA1), Bacillus cereus (MBAA2), and Bacillus 

amyloliquefaciens (MBAA3), as well as one fungus, Trichoderma 

citrinoviride (MBAAT), were chosen. The current review was 

embraced to foster a plant development elevating microbial 

consortium to decrease the sickness occurrence in Glycine max 

both under in vitro and in vivo conditions. Biocontrol properties 

like siderophore, ammonia, and enzymes like -1,3 glucanase, 

chitinase, and cellulase were more useful in consortia than in 

isolated strains. Plants treated with consortia and pathogen had a 

lower disease incidence (p < 0.05) than plants treated with a 

single antagonist and pathogen or a pathogen-infested control. 

When compared to Sclerotinia-infested control plants, which had 

a disease incidence of 97%, potted plants treated with S. 

sclerotiorum + MBAA1 + MBAAT had the greatest disease 

control, with a disease incidence of only 15.8%. Seed bacterised 

with MBAA1 
 
+ MBAAT displayed improved seed germination of G. max up to 

68% alongside resulting expansion in other plant development 

boundaries. In plants infected with M. phaseolina, seeds treated 

with MBAA1 + MBAAT showed a significant 
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increase in the seedling vigour index (1863.2) and chlorophyll 

content (13.518 mg/g). 

 

 

4. Identification and characterization of the 

fungal isolates 
 
The isolates that were showing high incidence of disease from 

the pathogen city test were selected and were identified based 

on the growth pattern and the morphological characteristics on 

PDA plates and the structure of the conidiophores under light 

microscope (Singh and Srivastava, 1953; Nethravathi, 2001a). 

 

5. Collection and maintenance of 

biocontrol agents and PGPR s 

 

The biocontrol agents collected from National Bureau of 

Agriculturally Important Insects (NBAII), Bangalore were as 

follows: 

 

● Bacterial biocontrol agents: Bacillus subtilis and 

Pseudomonas fluorescens, 

 

● Fungal biocontrol agents: Trichodermaviride, T. 

virens and T. harzianum. 

 

The beneficial microorganisms: Azotobacter chroococcum and 

Bacillus megaterium collected from Department of 

Agricultural Microbiology. 
 

6. Mass multiplication of 
Trichoderma harzianum 

 

Five mm disc of the Tricoderma harziaum grown on PDA 

plates and was transferred to sterile potato dextrose broth 

aseptically and incubated at 27 ± 1ºC potato dextrose broth as 

a stationary culture at room temperature for eight days. After 

eight days. After incubation the mycelial mat 

 

was separated, macerated using homogenizer and the fungal 

mass was obtained. The inoculum containing 7 x 105cfu/ml 

was added at the rate of 10 ml/kg of substrate. 
 

 

 

7. CONCLUSION WORK: 
 

 

In the present study, by combining well-characterized and 

compatible microorganisms, including bacteria and fungi, we 

demonstrated the potential of microbial consortia to 

effectively control fungal pathogens with different lifestyles 

through direct and plant-mediated disease suppression and 

using different application methods. Our findings pinpoint the 

design of synthetic microbial consortia for biocontrol of plant 

pathogens as a potential strategy to extend the functionality 

and versatility of microbial biological control. 
 
The use of beneficial microorganisms for the biological 

control of plant diseases and pests has emerged as a viable 

alternative to chemical pesticides in agriculture. Traditionally, 

microbe-based biocontrol strategies for crop protection relied 

on the application of single microorganisms. However, the 

design of microbial consortia for improving the reliability of 

current biological control practices is now a major trend in 

biotechnology, and it is already being exploited commercially 

in the context of sustainable agriculture. 
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