ECCENTRIC DOM- CHROMATIC NUMBER OF GRAPHS
 JINISHA KALAIARASAN K S,
 Research Scholar(Fulltime), Reg No:18213112092026, PG and Research Department of Mathematics Scott Christian College(Autonomous), Nagercoil-629003, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.
 jinishakalaiarasan@gmail.com
 DR. K. LAL GIPSON
 Assistant Professor, PG and Research Department of Mathematics, Scott Christian college(Autonomous), Nagercoil-629003, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012 Tamilnadu, India.

Ialgipson@yahoo.com.

Abstract

For a given χ-colouring of a graph a Eccentric dominating set $S \subseteq V(G)$ is said to be Eccentric dom- Colouring set $\left(\gamma_{e d c}\right)$ if it contains atleast one vertex of each colour class of G. In this paper we establish Eccentric Dom- Chromatic Number of Graphs. In a particular, we investigate Eccentric dom- Chromatic number for star, Path.

Keywords: Domination, Eccentric Domination, Eccentric Dom-Colouring.

1. INTRODUCTION

In the article, all the terminologies from the graph theory are used in the case of Frank Haray. A simple Undirected graph without loops or Multiple edges are Considered here. As usual p, q denote the number of vertices and edges of a graph G respectively. A path on p vertices is denoted by P_{p}.

DEFINITION 1.1

A closed walk in which no vertices, except the end vertices, are repeated is called the cycle and the number of edges in a cycle is called its length.

DEFINITION 1.2

A set $D \subseteq V(G)$ of vertices in a graph G is a dominating set if every vertex v in $V-D$ is adjacent to a vertex in D. The Minimium Cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$.

DEFINITION 1.3

A set $D \subseteq V(G)$ is an eccentric dominating set if D is a dominating set of G and for every $v \in V-D$, there exists atleast one eccentric point of v in D.

If D is an eccentric dominating set, then every superset $D^{\prime} \supseteq D$ is also an eccentric dominating set. But $D^{\prime \prime} \subseteq D$ is not necessarily an eccentric dominating set.

A eccentric dominating set D is a minimal eccentric dominating set if no proper subset $D^{\prime \prime} \subseteq D$ is an eccentric dominating set.

DEFINITION 1.4

The eccentric domination number $\gamma_{e d}(G)$ of a graph G equals the minimum Cardinality of an eccentric dominating set, That is, $\gamma_{e d}(G)=\min |D|$ where, the minimum is taken over D in D, Where D is the set of all Minimal eccentric dominating sets of G.

DEFINITION 1.5

A coloring of a graph G is an assignment of colors to its vertices so that no two adjacent vertices have the same color. The set of all vertices with any one color is independent and is called a color class. A graph which uses k - colours is called k - colouring. The chromatic number (G) is defined as the minimum k for which G has a k-coloring.

DEFINITION 1.6

For a given χ-colouring of a graph G, a dominating set $S \subseteq V(G)$ is said to be domColouring set if it contains atleast one vertex of each colour class of G.

Eccentric Domination Chromatic Number of Graphs

DEFINITION

For a given χ-colouring of a graph G, a Eccentric dominating set $S \subseteq V(G)$ is said to be Eccentric dom- Colouring set $\left(\gamma_{e d c}\right)$ if it contains atleast one vertex of each colour class of G.

Theorem 1.1

For all Star graphs G denoted by $K_{1 . p}, p \geq 1$
i) $\quad \gamma_{e d c}=2$
ii) $\quad \gamma(G) \neq \gamma_{e d c}(G)$
iii) $\quad \gamma_{e d c}(G)=\gamma_{e d c}(G)$.

Proof:

Let G be any Star graph $K_{1 . p}, p \geq 1$. Label the vertices of the partite sets v_{1} to indicate that they are a part of the first partite set and $\left\{v_{2}, v_{3} \ldots v_{p}\right\}$ to indicate that they are a part of the second partite set. The minimum dominating set D of G is $\left\{v_{1}\right\}$. That is $D=\left\{v_{1}\right\}$. Therefore $\gamma\left(K_{1 . p}\right)=1$. But D is not a eccentric dominating set. Therefore it is necessary to add another vertex from the other partite set. Hence $D=\left\{v_{1}, v_{i}\right\}, i \geq 2$ is the minimum eccentric dominating set and also contains atleast one vertex from each colour class. Thus $\gamma_{\text {edc }}\left(K_{1 . p}\right)=$ 2. Since $\gamma\left(K_{1 . p}\right)=1$ and $\gamma_{e d c}\left(K_{1 . p}\right)=2$. Therefore $\gamma(G) \neq \gamma_{e d c}(G)$. The minimum eccentric dominating set D of G is $\left\{v_{1}, v_{2}\right\}$. Thus $\gamma_{e d c}\left(K_{1 . p}\right)=2$. We have $\gamma_{e d c}\left(K_{1 . p}\right)=$ $\gamma_{e d c}\left(K_{1 . p}\right)=2$.

Theorem 1.2

For any path P_{p} with $p \geq 3$ vertices
$\gamma_{e d c}\left(P_{p}\right)=\left\lceil\frac{p}{3}\right\rceil$, if $p=3 k+1$
$\gamma_{e d c}\left(P_{p}\right)=\left\lceil\frac{p}{3}\right\rceil+1$, if $p=3 k$ or $p=3 k+2$

Proof:

Case i) $p=3 k$
Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ represent the path $P_{p} . D=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{3 k-1}\right\}$ is the minimum domination set of P_{p}, but not an eccentric dominating set.
$D_{1}=\left\{v_{1}, v_{4}, v_{7}, \ldots . v_{3 k-2}, v_{3 k}\right\}$ is the minimum eccentric dominating set and it contains at least one vertex from each class colour.

Hence $\gamma_{e d c}\left(P_{3 k}\right)=\gamma_{e d c}\left(P_{3 k}\right)$

$$
=\left\lceil\frac{p}{3}\right\rceil+1
$$

Case ii) $p=3 k+1$
Let $D=\left\{v_{1}, v_{4}, v_{7} \ldots . v_{3 k-2}, v_{3 k+1}\right\}$ is the minimum domination set and minimum eccentric dominating set in P_{p} and also it contains atleast one vertex from each class colour.

Hence $\gamma_{e d c}\left(P_{p}\right)=\gamma_{e d c}\left(P_{p}\right)=\gamma\left(P_{p}\right)=\left\lceil\frac{p}{3}\right\rceil$
Case iii) $p=3 k+2$

Let $D=\left\{v_{1}, v_{5}, v_{8}, \ldots, v_{3 k+2}\right\}$ is the minimum eccentric dominating set and also it contains at least one vertex from each class colour.

$$
\text { Therefore } \begin{aligned}
\gamma_{e d c}\left(P_{p}\right) & =\gamma_{e d c}\left(P_{p}\right) \\
& =\left\lceil\frac{p}{3}\right\rceil+1
\end{aligned}
$$

REFERENCES

[1] K.Lakshmi Praha, K.Nagarajan, "Ascending Domination Decomposition of graphs", International Journal of Mathematics and Soft Computing, 4(1)(2014), 119-128.
[2] K.Lakshmi Praha, K.Nagarajan, "Ascending Domination Decomposition of subdivision
[3] Juraj Bosak, "Decomposition of Graphs", Kluwer Academic Publishers, 1990.
[4] Usha. P., Joice Punitha. M., Beulah Angeline E.F., "Dom-Chromatic Number of Certain graphs", International Journal of Computer Sciences and Engineering,7(5),2019.
[5] F.Harary, "Graph Theory", Narosa Publishing House, New Delhi,1998.
[6] T.N.Janakiraman, M.Bhanumathi and S.Muthammai, "Eccentric Domination in Graphs", International Journal of Engineering Science, Advanced Computing and BioTechnology, 2(2000), 55-70.
[7] K.S.Jinisha kalaiarasan and K. Lal Gipson, "Eccentric domination decomposition of graphs", Malaya Journal of Mathematik, 8(3)(2020), 1186-1188.

