## ISSN PRINT 23191775 Online 23207876

Mean Square Difference Cordial Labeling of Path Related Graphs ${ }^{1 *}$ S.STANLY, ${ }^{2}$ DR.I.GNANASELVI, ${ }^{3}$ DR.S.ALICE PAPPA
${ }^{1}$ Research Scholar, Reg.No: 19222142092008, Nazareth Margoschis College, Pillayanmanai, Nazareth-628617, Tamilnadu, India. (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamilnadu, India).
*Corresponding Author
${ }^{2}$ Assistant Professor of Mathematics, Sarah Tucker College, Tirunelveli-7, Tamilnadu, India. . (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamilnadu, India).
${ }^{3}$ Associate Professor of Mathematics, Nazareth Margoschis College, Pillayanmanai, Nazareth - 628617, Tamilnadu, India.
. (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamilnadu, India).
${ }^{1}$ jebastany @ gmail.com ${ }^{2}$ selvikim@gmail.com
${ }^{3}$ alicestephen8979 @ gmail.com


#### Abstract

Mean Square Difference Cordial Labeling of a graph G with vertex set V is a bijection from $\mathrm{V}(\mathrm{G})$ to $\{1,2, \ldots \ldots,|\mathrm{~V}(\mathrm{G})|\}$ such that an edge uv is assigned 0 , if $\left[\frac{\left|[\mathrm{f}(\mathrm{u})]^{2}-[\mathrm{f}(\mathrm{v})]^{2}\right|}{2}\right]$ is even and an edge uv is assigned 1 , if $\left[\frac{\left|[\mathrm{f}(\mathrm{u})]^{2}-[\mathrm{f}(\mathrm{v})]^{2}\right|}{2}\right]$ is odd then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph with a mean square difference cordial labeling is called a Mean Square Difference Cordial graph.

This paper elucidates Mean Square Difference Cordial Labeling of Centipede, Total graph of path, Quadrilatornal Snake, Hurdle, ladder and $\mathrm{P}_{\mathrm{n}} \odot \mathrm{A}\left(\mathrm{k}_{1}\right)$ graphs.

Keywords: Centipede, Total graph of path, Quadrilatornal Snake, Hurdle, ladder, $\mathrm{P}_{\mathrm{n}} \odot \mathrm{A}\left(\mathrm{k}_{1, \mathrm{n}}\right)$, Mean Square Difference Cordial Labeling, Mean Square Difference Cordial graph.

\section*{1. INTRODUCTION}

Allocation of labels to vertices or edges or both under some constraints is known as graph labeling. If labels are given to vertices then the resultant labeling is known as vertex labeling and if labels are given to edges then the resultant labeling is known as edge labeling. Here we considered only simple, finite, connected and undirected graphs. Labeling techniques and


## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022
extensive survey we refer Gallian[1]. For various definitions and review relevant to present study we refer F. Harary[2].

## 2. PRELIMINARIES

## Definition 2.1

Mean Square Difference Cordial Labeling of a graph $G$ with vertex set V is a bijection from $\mathrm{V}(\mathrm{G})$ to $\{1,2, \ldots \ldots,|\mathrm{~V}(\mathrm{G})|\}$ such that an edge uv is assigned 0 , if $\left[\frac{\left|[\mathrm{f}(\mathrm{u})]^{2}-[\mathrm{f}(\mathrm{v})]^{2}\right|}{2}\right]$ is even and an edge uv is assigned 1, if $\left\lfloor\frac{\left[[\mathrm{ff}(\mathrm{u})]^{2}-[\mathrm{f}(\mathrm{v})]^{2} \mid\right.}{2}\right\rfloor$ is odd then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . A graph with a mean square difference cordial labeling is called a Mean Square Difference Cordial graph.

## Definition 2.2

A graph $G(V, E)$ obtained by a path by attaching exactly two pendent edges to each vertices of the path is called a centipede graph.

## Definition 2.3

The total graph $T(G)$ of $G$ is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in $G$. When $G=P_{n}$, the total graph of path is $T\left(P_{n}\right)$.

## Definition 2.4

Quadrilatornal Snake $Q_{n}$ is obtained from a path $u_{1}, u_{2}, \ldots . u_{n}$ by joining $u_{i}$ to $u_{i+1}$ to new vertices $v_{i}$ and $w_{i}$ repectively, and joining $v_{i}$ and $w_{i}$. That is every edge of a path is replaced by a cycle $\mathrm{C}_{4}$.

## Definition 2.5

A graph obtained from a path $\mathrm{P}_{\mathrm{n}}$ by attaching a pendent edges to every internal vertices of the path. It is called Hurdle graph with $\mathrm{n}-2$ hurdles and is denoted by $\mathrm{Hd}_{\mathrm{n}}$.

## Definition 2.6

A ladder graph $L_{n}$ is defined by $L_{n}=P_{n} \times K_{2}$ where $P_{n}$ is a path of $n$ vertices and $x$ denotes the Cartesian product and $\mathrm{K}_{2}$ is a complete graph with two-vertices.

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022

## Definition 2.7

Let $G$ be the graph obtained by joining pendant edges alternately to the vertices of path $P_{n}(n>3)$, where the pendant edges starts from the first vertex. $G$ is denoted by the symbol $\mathrm{P}_{\mathrm{n}} \odot \mathrm{A}\left(\mathrm{k}_{1}\right)$.

## 3. MAIN RESULTS

## Theorem 3.1

Centipede is a Mean Square Difference Cordial Graph.

## Proof

Let $G=P_{n} \odot 2 k_{1}$ be a centipede graph
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq 3 \mathrm{n}\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{3 \mathrm{i}-2} \mathrm{v}_{3 \mathrm{i}-1} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{3 \mathrm{i}-1} \mathrm{v}_{3 \mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{3 \mathrm{i}-1} \mathrm{v}_{3 \mathrm{i}+2} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$
Then G is of order 3 n and size $3 \mathrm{n}-1$.
The function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots 3 \mathrm{n}\}$ is defined by,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i} ; 1 \leq \mathrm{i} \leq 3 \mathrm{n}$
The induced edge labels are defined by

$$
\mathrm{f}^{*}(\mathrm{uv})=\left\{\begin{array}{l}
0 ;\left\lfloor\left.\frac{\left|[\mathrm{f}(\mathbf{u})]^{2}-[\mathrm{f}(\mathbf{v})]^{2}\right|}{2} \right\rvert\,\right. \text { is even } \\
1 ;\left[\frac{\left.\mid \mathbf{f f ( u )}]^{2}-[\mathbf{f} \mathbf{v})\right]^{2} \mid}{2}\right\rfloor \text { is odd }
\end{array}\right.
$$

## Case (i) If $\mathbf{n}$ is odd

$$
\begin{aligned}
& f^{*}\left(v_{3 i-2} v_{3 i-1}\right)= \begin{cases}0 ; & i=2,4,6 \ldots . n-1 \\
1 ; & i=1,3,5 \ldots . n\end{cases} \\
& f^{*}\left(v_{3 i-1} v_{3 i}\right)= \begin{cases}0 ; & i=1,3,5 \ldots . n \\
1 ; & i=2,4,6 \ldots . n-1\end{cases} \\
& f^{*}\left(v_{3 i-1} v_{3 i+2}\right)= \begin{cases}0 ; & i=1,3,5 \ldots . n-2 \\
1 & ; \quad i=2,4,6 \ldots . n-1\end{cases}
\end{aligned}
$$

Hence we observe that

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022
$e_{f}(0)=\left\lfloor\frac{3 n}{2}\right\rfloor ; \quad e_{f}(1)=\left\lfloor\frac{3 n}{2}\right\rfloor$

## Case (ii) If $\mathbf{n}$ is even

$f^{*}\left(v_{3 i-2} v_{3 i-1}\right)= \begin{cases}0 ; & i=2,4,6 \ldots . n \\ 1 ; & i=1,3,5 \ldots . n-1\end{cases}$
$f^{*}\left(v_{3 i-1} v_{3 i}\right)= \begin{cases}0 ; & i=1,3,5 \ldots . n-1 \\ 1 ; & i=2,4,6 \ldots . n\end{cases}$
$f^{*}\left(v_{3 i-1} v_{3 i+2}\right)= \begin{cases}0 ; & i=1,3,5 \ldots . n-1 \\ 1 ; & i=2,4,6 \ldots . n-2\end{cases}$
Hence we observe that
$e_{f}(0)=\left\lfloor\frac{3 n}{2}\right\rfloor, e_{f}(1)=\left\lfloor\frac{3 n-1}{2}\right\rfloor$
In both the cases we notice that $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$
Hence centipede graph admits Mean Square Difference Cordial labeling.
Centipede graph is a Mean Square Difference Cordial graph.
Example 3. 2
$\mathbf{P}_{7} \odot 2 \mathrm{k}_{1}$


Figure 3.2.1

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022

$$
\mathbf{P}_{6} \odot 2 \mathbf{k}_{1}
$$



Figure 3.2.2
Theorem 3.3
The total graph of path is a Mean Square Difference Cordial Graph.

## Proof

Let $G=T\left(P_{n}\right)$ be a total graph of path $P_{n}$.
Let $\mathrm{V}(\mathrm{G}))=\left\{\mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$ and
$\mathrm{E}(\mathrm{G}))=\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{d}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}-2\right\}$
Where $a_{i}=v_{i} v_{i+1}, b_{i}=v_{i} u_{i}, c_{i}=v_{i+1} u_{i}$ for $1 \leq i \leq n-1$ and
$\mathrm{d}_{\mathrm{i}}=\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq \mathrm{n}-2$
Then $G$ is of size order $2 n-1$ and $4 n-5$.
The function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots .2 \mathrm{n}-1\}$ is defined by
$\mathrm{f}\left(\mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=2 \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i} ; 2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022
The induced edge labels are defined by

$$
\mathrm{f}^{*}(\mathrm{uv})=\left\{\begin{array}{l}
0 ;\left[\left.\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathbf{f}(\mathbf{v})]^{2}\right|}{2} \right\rvert\,\right. \text { is even } \\
1 ;\left[\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathbf{f} \mathbf{( v )}]^{2}\right|}{2}\right] \text { is odd }
\end{array}\right.
$$

$\mathrm{f}^{*}\left(\mathrm{a}_{\mathrm{i}}\right)=0 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{~b}_{\mathrm{i}}\right)=1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{c}_{\mathrm{i}}\right)=1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-2, \mathrm{f}^{*}\left(\mathrm{c}_{\mathrm{n}-1}\right)=0$
$\mathrm{f}^{*}\left(\mathrm{~d}_{\mathrm{i}}\right)=0 ; 1 \leq \mathrm{i} \leq \mathrm{n}-2$
Hence we observe that

$$
\mathrm{e}_{\mathrm{f}}(0)=2 \mathrm{n}-2 ; \mathrm{e}_{\mathrm{f}}(1)=2 \mathrm{n}-3
$$

Thus $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$
In the above two cases total graph of path $\mathrm{T}\left(\mathrm{P}_{\mathrm{n}}\right)$ admits Mean Square Difference Cordial Labeling. Hence the total graph of path is Mean Square Difference Cordial graph.

Example 3.4
$T\left(P_{9}\right)$


Figure 3.4.1

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022

## Theorem 3.5

Quadrilateral Snake is a Mean Square Difference Cordial Graph.

## Proof:

Let $\mathrm{G}=\mathrm{QS}_{\mathrm{n}}$ be a Quadrilateral Snake graph.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}+1\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{w}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and
$E(G)=\left\{u_{i} u_{i+1} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i+1} W_{i} ; 1 \leq i \leq n\right\} \cup\left\{v_{i} w_{i} ; 1 \leq i \leq n\right\}$

Then $G$ of order $3 n+1$ and size $4 n$

Case(i): If $\mathbf{n}$ is odd
The function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots .3 \mathrm{n}+1\}$ is defined by
$\mathrm{f}\left(\mathrm{u}_{1}\right)=1, \mathrm{f}\left(\mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{w}_{1}\right)=3$.
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 ; 2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} ; 2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{n}}\right)=3 \mathrm{n}+1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}+1}\right)=3 \mathrm{n}$

The induced edge labels are defined by

## ISSN PRINT 23191775 Online 23207876

$\mathrm{f}^{*}(\mathrm{uv})=\left\{\begin{array}{l}0 ;\left\lfloor\left.\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathrm{f}(\mathbf{v})]^{2}\right|}{2} \right\rvert\, \text { is even }\right. \\ 1 ;\left\lfloor\frac{\mid \mathbf{f f ( u )}]^{2}-[\mathbf{f}(\mathbf{v})]^{2} \mid}{2}\right\rfloor \text { is odd }\end{array}\right.$
$f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{l}0 ; i=2,4,6, \ldots \ldots \ldots n-1 \\ 1 ; i=1,3,5, \ldots . n-2\end{array}\right.$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{\mathrm{n}+1}\right)=0$
$f^{*}\left(v_{i} W_{i}\right)=\left\{\begin{array}{l}0 ; i=1,3,5, \ldots \ldots \ldots n \\ 1 ; i=2,4,6, \ldots n-1\end{array}\right.$
$f^{*}\left(u_{i} v_{i}\right)= \begin{cases}0 ; & i=2,4,6, \ldots . n-1 \\ 1 ; & i=1,3,5, \ldots \ldots . n\end{cases}$
$f^{*}\left(u_{i+1} w_{i}\right)=\left\{\begin{array}{l}0 ; i=2,4,6, \ldots . n-1 \\ 1 ; i=1,3,5, \ldots \ldots . n\end{array}\right.$
Hence we observe that
$\mathrm{e}_{\mathrm{f}}(0)=2 \mathrm{n} ; \mathrm{e}_{\mathrm{f}}(1)=2 \mathrm{n}$
Thus $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$

## Case(ii) : If $\mathbf{n}$ is even

The function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . .3 \mathrm{n}+1\}$ is defined by
$\mathrm{f}\left(\mathrm{u}_{1}\right)=1, \mathrm{f}\left(\mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{w}_{1}\right)=3$.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=3 \mathrm{i}+2 ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} ; 2 \leq \mathrm{i} \leq \mathrm{n}$

The induced edge labels are defined by

## ISSN PRINT 23191775 Online 23207876

$$
\begin{aligned}
& f^{*}(u v)=\left\{\begin{array}{l}
0 ;\left[\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathbf{f}(\mathbf{v})]^{2}\right|}{2}\right] \text { is even } \\
1 ;\left[\frac{\mid[\mathbf{f} \mathbf{u})]^{2}-[\mathbf{f}(\mathbf{v})]^{2} \mid}{2}\right\rfloor \text { is odd }
\end{array}\right. \\
& f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}0 ; & i=2,4,6, \ldots \ldots \ldots n \\
1 ; & i=1,3,5, \ldots . n-1\end{cases} \\
& f^{*}\left(v_{i} W_{i}\right)=\left\{\begin{array}{l}
0 ; i=1,3,5, \ldots . . n-1 \\
1 ; i=2,4,6, \ldots \ldots . . n
\end{array}\right. \\
& f^{*}\left(u_{i} v_{i}\right)=\left\{\begin{array}{l}
0 ; i=2,4,6, \ldots \ldots \ldots n \\
1 ; i=1,3,5, \ldots . . n-1
\end{array}\right. \\
& f^{*}\left(u_{i+1} W_{i}\right)=\left\{\begin{array}{l}
0 ; i=2,4,6, \ldots \ldots \ldots n \\
1 ; i=1,3,5, \ldots . n-1
\end{array}\right.
\end{aligned}
$$

Hence the observe that

$$
\mathrm{e}_{\mathrm{f}}(0)=2 \mathrm{n} ; \mathrm{e}_{\mathrm{f}}(1)=2 \mathrm{n}
$$

Thus $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$
In both cases Quadrilateral Snake QS $_{\mathrm{n}}$ admits Mean Square Difference Cordial Labeling. Hence Quadrilateral Snake is a Mean Square Difference Cordial graph.

Example 3.6

## $\mathbf{Q S}_{3}$



Figure 3.6.1

## ISSN PRINT 23191775 Online 23207876



Figure 3.6.2

## Theorem 3.7

Hurdle graph is a Mean Square Difference Cordial Graph.

## Proof:

Let $\mathrm{G}=\mathrm{Hd}_{\mathrm{n}}$ be a Hurdle Graph,

Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}-2\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} ; 1 \leq \mathrm{i} \leq \mathrm{n}-2\right\}$

Then G is of order $2 \mathrm{n}-2$ and size $2 \mathrm{n}-3$

## Case (i) If $\mathbf{n}$ is odd

The function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . .2 \mathrm{n}-2\}$ is defined by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$f\left(u_{n}\right)=2 n-3$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-2$

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022
The induced edge labels are defined by
$f^{*}(u v)=\left\{\begin{array}{l}0 ;\left[\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathbf{f}(\mathbf{v})]^{2}\right|}{2}\right] \text { is even } \\ 1 ;\left[\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathbf{f}(\mathbf{v})]^{2}\right|}{2}\right] \text { is odd }\end{array}\right.$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=0 ; 1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{n}-1} \mathrm{u}_{\mathrm{n}}\right)=1$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}+1} \mathrm{v}_{\mathrm{i}}\right)=1 ; 1 \leq \mathrm{i} \leq \mathrm{n}-2$

We observe that
$\mathrm{e}_{\mathrm{f}}(0)=\mathrm{n}-2 ; \mathrm{e}_{\mathrm{f}}(1)=\mathrm{n}-1$

Thus $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$

## Case (ii) If $\mathbf{n}$ is even

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots, 2 \mathrm{n}-2\}$ as follows
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-2$

The induced edge labels are defined by
$f^{*}(u v)=\left\{\begin{array}{l}0 ;\left[\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathbf{f}(\mathbf{v})]^{2}\right|}{2}\right] \text { is even } \\ 1 ;\left[\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathbf{f}(\mathbf{v})]^{2}\right|}{2}\right] \text { is odd }\end{array}\right.$
$f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}0 ; & i=2,4,6, \ldots . n-2 \\ 1 ; & i=1,3, \ldots . n-1\end{cases}$
$f^{*}\left(u_{i+1} v_{i}\right)= \begin{cases}0 ; & i=1,3,5, \ldots . . n-3 \\ 1 ; & i=2,4,6, \ldots . n-2\end{cases}$
We observe that

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022
$\mathrm{e}_{\mathrm{f}}(0)=\mathrm{n}-2 ; \mathrm{e}_{\mathrm{f}}(1)=\mathrm{n}-1$

Thus $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$

In both the cases we observe that the hurdle graph $\mathrm{Hd}_{\mathrm{n}}$ admits Mean Square Difference Cordial labeling.

Hence Hurdle graph $\mathrm{Hd}_{\mathrm{n}}$ is a Mean square Difference graph.

## Example 3.8

$\mathrm{Hd}_{8}$


Figure 3.8.1
$H_{9}$


Figure 3.8.2 Food And Nutritional Sciences Food And Nutritional Sciences

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022

## Theorem 3.9

Ladder graph is a Mean Square Difference Cordial Graph.

## Proof

Let $G=L_{n}$ be a ladder graph.
Let $V(G)=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and
$E(G)=\left\{u_{i} u_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} ; 1 \leq i \leq n\right\}$
Then G is of order 2 n and size $3 \mathrm{n}-2$

## Case (i) If $\mathbf{n}$ is odd

The function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . .2 \mathrm{n}\}$ is defined by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{n}-\mathrm{i} ; 0 \leq \mathrm{i} \leq \mathrm{n}-1$
The induced edge labels are defined by

$$
\begin{aligned}
& \mathrm{f}^{*}(\mathrm{uv})=\left\{\begin{array}{l}
0 ;\left[\frac{\left|[\mathrm{f}(\mathbf{u})]^{2}-[\mathrm{f}(\mathrm{v})]^{2}\right|}{2}\right] \text { is even } \\
1 ;\left[\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathbf{f} \mathbf{( v )}]^{2}\right|}{2}\right] \text { is odd }
\end{array}\right. \\
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\left\{\begin{array}{l}
0 ; i=2,4,6, \ldots \ldots \mathrm{n}-1 \\
1 ; \mathrm{i}=1,3, \ldots . \mathrm{n}-2
\end{array}\right. \\
& \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)= \begin{cases}0 ; & \mathrm{i}=2,4,6, \ldots \ldots \mathrm{n}-1 \\
1 ; & \mathrm{i}=1,3, \ldots . \mathrm{n}-2\end{cases} \\
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)= \begin{cases}0 ; & \mathrm{i}=2,4,6, \ldots \ldots \mathrm{n}-1 \\
1 ; & \mathrm{i}=1,3, \ldots \ldots \mathrm{n}\end{cases}
\end{aligned}
$$

Hence we observe that,

$$
\mathrm{e}_{\mathrm{f}}(0)=\left\lfloor\frac{3 \mathrm{n}-2}{2}\right\rfloor ; \mathrm{e}_{\mathrm{f}}(1)=\left\lfloor\frac{3 \mathrm{n}-1}{2}\right\rfloor
$$

## Case (ii) If $\mathbf{n}$ is even

The function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . .2 \mathrm{n}\}$ is defined by

## ISSN PRINT 23191775 Online 23207876

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=2 \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{v}_{2}\right)=2 \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}+2}\right)=2 \mathrm{n}-1-\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}-2
\end{aligned}
$$

The induced edge labels are,

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} u_{i+1}\right)= \begin{cases}0 ; & i=2,4, \ldots . \mathrm{n}-2 \\
1 ; & \mathrm{i}=1,3,6, \ldots \ldots \mathrm{n}-1\end{cases} \\
& \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)= \begin{cases}0 ; & \mathrm{i}=2,4, \ldots . \mathrm{n}-2 \\
1 ; & \mathrm{i}=1,3, \ldots \ldots \mathrm{n}-1\end{cases} \\
& \mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=0 \\
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)= \begin{cases}0 ; & \mathrm{i}=2,4, \ldots . \mathrm{n} \\
1 ; & \mathrm{i}=3,5, \ldots \ldots \mathrm{n}-1\end{cases}
\end{aligned}
$$

Hence we observe that,

$$
\mathrm{e}_{\mathrm{f}}(0)=\frac{3 \mathrm{n}-2}{2} ; \mathrm{e}_{\mathrm{f}}(1)=\frac{3 \mathrm{n}-2}{2}
$$

In both cases, we notice that

$$
\left|e_{f}(0)-e_{f}(1)\right| \leq 1
$$

The ladder graph admits Mean square difference cordial labeling.
Hence ladder graph is a Mean square difference cordial graph.

## Example 3.10

L5

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022


Figure 3.10.1
${ }^{L} 6$


Figure 3.10.2
Theorem 3.11
The Graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{A}\left(\mathrm{k}_{1}\right)$ is a Mean Square Difference Cordial Graph.
Proof
Let $G=P_{n} \odot A\left(k_{1}\right)$ be a Graph.

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022

## Case (i) If $\mathbf{n}$ is odd

Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right.$ and $\left.\mathrm{v}_{\mathrm{i}}{ }^{\prime} ; 1 \leq \mathrm{i} \leq \frac{\mathrm{n}+1}{2}\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{1} \mathrm{v}_{1}{ }^{\prime}\right\} \cup\left\{\mathrm{v}_{\mathrm{n}} \mathrm{V}_{\frac{\mathrm{n}+1}{2}}^{\prime}\right\} \cup\left\{\mathrm{v}_{2 \mathrm{i}+1} \mathrm{v}_{\mathrm{i}+1}^{\prime} ; 1 \leq \mathrm{i} \leq \frac{\mathrm{n}-3}{2}\right\}$
Then G is of order $\frac{3 \mathrm{n}+1}{2}$ and size $\frac{3 \mathrm{n}-1}{2}$
The function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2 \ldots \frac{3 \mathrm{n}+1}{2}\right\}$ is defined by,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=\mathrm{n}+\mathrm{i} ; \quad 1 \leq \mathrm{i} \leq \frac{\mathrm{n}+1}{2}$
The induced edge labels are defined by
$f^{*}(u v)=\left\{\begin{array}{l}0 ;\left[\frac{\left|[\mathbf{f}(\mathbf{u})]^{2}-[\mathrm{f}(\mathrm{v})]^{2}\right|}{2}\right] \text { is even } \\ 1 ;\left[\frac{[\mathbf{f ( u )})]^{2}-[\mathbf{f}(\mathrm{v})]^{2} \mid}{2}\right\rfloor \text { is odd }\end{array}\right.$
$f^{*}\left(v_{i} v_{i+1}\right)= \begin{cases}0 & ; i=2,4,6, \ldots . n-1 \\ 1 & ; i=1,3,5, \ldots n-2\end{cases}$
$f^{*}\left(v_{2 i-1} v_{i}^{\prime}\right)=\left\{\begin{array}{l}0 ; \quad i=2,4,6, \ldots . \frac{n+1}{2} \\ 1 ; \quad i=1,3,5, \ldots . . \frac{n-1}{2}\end{array}\right.$
n is classified into two cases
$\mathrm{n}= \begin{cases}4 \mathrm{k}-1, & \mathrm{k}=1,2,3 \ldots . \\ 4 \mathrm{k}+1, & \mathrm{k}=1,2,3 \ldots\end{cases}$
Sub case (i) when $\mathrm{n}=4 \mathrm{k}-1$ where $\mathrm{k}=1,2,3 \ldots .$.
$\mathrm{e}_{\mathrm{f}}(0)=3 \mathrm{k}-1 ; \quad \mathrm{e}_{\mathrm{f}}(1)=3 \mathrm{k}-1$
Thus $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)=\right| \leq 1$
Sub case (ii) when $\mathrm{n}=4 \mathrm{k}+1$ where $\mathrm{k}=1,2,3 \ldots$
$\mathrm{e}_{\mathrm{f}}(0)=3 \mathrm{k} ; \mathrm{e}_{\mathrm{f}}(1)=3 \mathrm{k}+1$

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022
Thus $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)=\right| \leq 1$

## Case (ii) If $\mathbf{n}$ is even

Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right.$ and $\left.\mathrm{v}_{\mathrm{i}}{ }^{\prime} ; 1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{1} \mathrm{v}_{1}{ }^{\prime}\right\} \cup\left\{\mathrm{v}_{2 \mathrm{i}+1} \mathrm{v}_{\mathrm{i}+1}{ }^{\prime} ; 1 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}\right\}$
Then G is of order $\frac{3 \mathrm{n}}{2}$ and size $\frac{3 \mathrm{n}-2}{2}$
Define $f: V(G) \rightarrow\left\{1,2 \ldots \frac{3 n}{2}\right\}$ as follows
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=\mathrm{n}+\mathrm{i} ; \quad 1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}$
The induced edge labels are,
$f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}0 ; i=2,4,6 \ldots n-2 \\ 1 ; \quad i=1,3,5 \ldots n-1\end{array}\right.$
$f^{*}\left(v_{2 i-1} v_{i}^{\prime}\right)=\left\{\begin{array}{l}0 ; i=1,3,5 \ldots \frac{n-2}{2} \\ 1 ; i=2,4,6 \ldots \frac{n}{2}\end{array}\right.$
n is classified into two cases

$$
\mathrm{n}=\left\{\begin{array}{l}
4 \mathrm{k}, \mathrm{k}=1,2,3 \ldots \\
4 \mathrm{k}+2, \mathrm{k}=1,2,3 \ldots
\end{array}\right.
$$

Sub case (i) when $\mathrm{n}=4 \mathrm{k}$ where $\mathrm{k}=1,2,3 \ldots$.
$\mathrm{e}_{\mathrm{f}}(0)=3 \mathrm{k}-1 ; \mathrm{e}_{\mathrm{f}}(1)=3 \mathrm{k}$
Thus $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$
Sub case (ii) when $\mathrm{n}=4 \mathrm{k}+2$ where $\mathrm{k}=1,2,3 \ldots$
$\mathrm{e}_{\mathrm{f}}(0)=3 \mathrm{k}+1 ; \mathrm{e}_{\mathrm{f}}(1)=3 \mathrm{k}+1$
Thus $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$
In both the cases $\mathrm{P}_{\mathrm{n}} \odot A\left(\mathrm{k}_{1}\right)$ admits Mean Square Difference Cordial Labeling.

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022
Hence the graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{A}\left(\mathrm{k}_{1}\right)$ is a Mean Square Difference Cordial Graph.
Example: $\mathbf{3 . 1 2}$
$\mathbf{P}_{7} \odot \mathbf{A}\left(\mathbf{k}_{1}\right)$


Figure 3.12.1

$$
\mathbf{P}_{\mathbf{8}} \odot \mathbf{A}\left(\mathbf{k}_{1}\right)
$$



Figure 3.12.2

## ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022

## 4. CONCLUSION

In this paper, we have proved that the Centipede, Total graph of path, Quadrilatornal Snake, Hurdle, ladder, $\mathrm{P}_{\mathrm{n}} \odot \mathrm{A}\left(\mathrm{k}_{1}\right)$ graphs are Mean Square Difference Cordial Graphs.

## References

[1] J.A Gallian, A Dyamic Survey of Graph Labeling, The Electronic J. Combin, 17(2015)\#DS6
[2] F. Harary, Graph Theory, Addison- Wesley, Reading, Mass (1972).
[3] A. Lourdusamy, F. Patrick, Sum divisor Cordial Graphs, Proyecciones Journal of Mathematics Vol.35, NO1, PP.119-136, March 2016.
[4] S. Stanly, I.Gnanaselvi, S.Alice Pappa, Mean Square Difference Cordial Labeling of Some Graphs, Design Engineering, ISSN: 0011-9342/ year 2021, Issue: 9, Pages: 5108-5115.
[5] S. Stanly, I.Gnanaselvi, S.Alice Pappa, Mean Square Difference Cordial Labeling of Crown, Jelly Fish, Coconut Tree, $\left\langle\mathrm{K}_{1, \mathrm{n}}^{(1)}, \mathrm{K}_{1, \mathrm{n}}^{(2)}>\right.$ Graphs, Proceedings of International Virtual Conference on current Scenario in Modern Mathematics, IBBN: 978-81-948552-9-3, Page 84.
[6] S. Stanly, I.Gnanaselvi, S.Alice Pappa, Mean Square Difference Cordial Labeling of Some Graphs, proceedings of national conference on modern advances in teaching and learning, ISBN: 978-93-92537-59-2 , page. No: 46-52.
[7] S. Stanly, I.Gnanaselvi, S.Alice Pappa, Mean Square Difference Cordial Labeling of cycle Related Graphs, proceedings of international conference on Recent Trends in Mathematics, ISBN: 978-93-5890-962-3, page. No: 63-69.
[8] Sunoj BS, Mathew verkey T.K, on Raised product prime labeling of some Tree Graphs, International Journal of Innovative Science and research Technology, volume 4, Issue 1, January - 2019, ISSN.NO - 2456 - 2165.
[9] M.V.Modha and K.K.Kannai, k - cordiality of wheel, path related and cycle related graphs, International Journal of mathematics and Scientific computing, Vol 5, No 2, 2015, ISSN 2231 - 5330.
[10] A.Durai Basker, S.Arockiaraj and B.Rajendran, Geomatric Mean labeling of graphs obtained from some graph operation - International J.math Combin, vol - 11(2013), 85 - 98.
[11] P.Sumathi and A.Rathi, Quotied labeling of some ladder Graphs, American Journal of

## ISSN PRINT 23191775 Online 23207876

## Research paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 11, 2022

Engineering research (AJER), E - ISSN: 2320-0847, P - ISSN: 2320 - 0936, Volume 7, Issue-12, PP 38-42.

