ISSN PRINT 2319 1775 Online 2320 7876

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

BEST PROXIMITY POINTS ON (ψ, ϕ) CONTRACTIONS IN RMS

ARUL RAVI.S, JULIA MARY.P b

Assistant Professor,
PG and Department of Mathematics,
St Xavier's College (Autonomous),
Palayamkottai.

ammaarulravi@gmail.com, juliamary14@gmail.com

Abstract

Existence of BPP of a $GC(\psi, \phi)$ - contractive mappings on CRMS is discussed and an example is enumerated.

Key words: RMS, BPP, *p* –property, Hausdroff.

1. Preliminaries and Introduction

During the last few years, FPT was one of the most developing disciplines in analysis. The development of this idea has sped up research, resulting in a massive rise in publishing [1-8]. The traditional idea of MS has developed in several other areas by partially modifying the metric requirements in a vast area of works. Mathews [6-7] introduced PMS, which is among these generalisations. We see RMS described by Branciari [12] in [1, 3, 9-12].

Branciari defined an RMS and also demonstrated a Banach contraction principle analogy. The nature of these concepts and FPT for several RMS contractions has been produced in [13-18]. Boyd and Wong [19] introduced CM called ϕ —contractions. In [20] a concept of weak ϕ —contractions was used and generalized by Alber and Guerre," A map T on a MS(M,d) is called WC if a map $\phi:[0,\infty)\to[0,\infty)$ having $\phi(0)=0$ and $\phi(t)>0$ for every t>0 s.t

$$d(Ta, Tb) \le d(a, b) - \phi(d(a, b))$$
 (1)

for all $a, b \in M$ ". The above contractions were discussed by many [20-23]. This type of $(\psi - \phi)$ WCM has been anarea of interest in [10, 20-23]. In the recent development in [23] we see that FPT was got by using $(\psi - \phi)$ WCM on CRMS. Here, we try to extend the result of Erhan. IM, and his companions [23] for the existence of BPP of $(\psi - \phi)$ contractions on RMS.

Definition: 1.1[12]

Let M be a set and $d: M \times M \to [0, \infty)$ that satisfies the axioms for every $a, b \in M$ and each is distinct $a, b \in M$ varies from c and d.

- (i) d(a,b) = 0 iff a = b
- (ii) d(a,b) = d(b,a)
- (iii) $d(a,b) \le d(a,c) + d(c,d) + d(d,b)$

Then d is called RM and (M, d) is called RMS.

ISSN PRINT 2319 1775 Online 2320 7876

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

Definition: 1.2

- (i) A sequence $\{a_n\}$ is convergent to a limit aif and only if $d(a_n, a) \to 0$ as $n \to \infty$ (denoted by $a_n \to a$)
- (ii) A sequence $\{a_n\}$ is a Cif and only if for every $\varepsilon > 0$ there is a PIN such that $d(a_n, a_m) < \varepsilon$ for all n, m > N.
- (iii) A RMS is complete if every CS in Mconverges in M.

The modified notation of SametandLakzian [9] is vividly seenand let ψ be the set of CF. $\psi: [0, \infty) \to [0, \infty)$ where $\psi(t) = 0$ iff t = 0 NDF that is known as ADF [23].

Theorem: 1.1[23]

Let (M, d) be a HS and CRMS and let $T: M \to M$ be a self- map that satisfies $\psi(d(Ta, Tb)) \le \psi(d(a, b)) - \phi(d(a, b))$ for all $a, b \in M$ where $\psi, \phi \in \Psi$ and ψ is considered as ND and continuous. Then T has a UFP.

Definition: 1.3[2]

$$A_0 = \{a \in A : d(a, b) = d(A, B), \text{ for } b \in B\}$$

$$B_0 = \{b \in B : d(a, b) = d(A, B), \text{ for } a \in A\}$$

where
$$d(A, B) = \inf\{d(a, b): a \in A, b \in B\}$$

Definition: 1.4[25]

Let (C, D) be a pair of sets of MS(M, d) with $C_0 \neq 0$. The pair (C, D) is said to have app if and only if for any $c_1, c_2 \in C_0$ and $d_1, d_2 \in D_0, d(c_1, d_1) = d(C, D) = d(c_2, d_2)$

2. Main Results

Result: 2.1

Let (M, d) be a HS and CRMS and Let (C, D) be a pair of CSS of MSs.t C_0 is NE. $T: C \to D$ be a map that satisfies $T(C_0) \subset D_0$. Suppose

$$\psi(d(Tc, Td)) \le \psi(M(c, d) - d(C, D)) - \phi(M(c, d) - d(C, D))....(2)$$

for all $c \in C$, $d \in D$ and ψ , $\phi \in \Psi$ where L > 0, and ψ is considered as ND and $M(c,d) = max\{d(c,d),d(c,Tc),d(d,Td)\}$

$$m(c,d) = \min\{d(c,Tc), d(d,Td), d(c,Td), d(c,Tc)\}$$

Then T has a BPP.

Proof:

Choose $c_0 \in C$.

For $Tc_0 \in T(C_0) \subset D_0$, there exists $c_1 \in C_0$ s.t $d(c_1, Tc_0) = d(C, D)$.

Similarly, regarding the assumption, $Tc_1 \in T(C_0) \subset D_0$,

We determine $c_2 \in C_0$ such that $d(c_2, Tc_1) = d(C, D)$.

We get a sequence by recursion $\{c_n\}$ in C_0 satisfying

ISSN PRINT 2319 1775 Online 2320 7876

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 202

$$d(c_{n+1}, Tc_n) = d(C, D)$$
 for all $n \in N$(3)

Claim: $d(c_n, c_{n+1}) \rightarrow 0$

If $c_N = c_{N+1}$, then c_N is a BPP.

By the p-property, we get

$$d(c_{n+1}, c_{n+2}) = d(Tc_n, Tc_{n+1})$$

We suppose that $c_n \neq c_{n+1}$ for all $n \in N$.

Since $d(c_{n+1}, Tc_n) = d(C, D)$, from (3), we have for all $n \in N$.

$$\psi(d(c_{n+1}, c_{n+2})) = \psi(d(Tc_n, Tc_{n+1}))$$

$$\leq \psi(M(c_n, c_{n+1}) - d(C, D)) - \phi(M(c_n, c_{n+1}) - d(C, D)) \dots (4)$$

Where $M(c_n, ca_{n+1}) = max \{d(c_n, c_{n+1}), d(c_n, Tc_n), d(c_{n+1}, Tc_{n+1})\}$

If $M(c_{n+1}, c_{n+2}) = d(c_n, c_{n+1})$, then we get

$$\psi(d(c_{n+1}, c_{n+2})) \le \psi(d(c_n, c_{n+1}) - d(C, D)) - \phi(d(c_n, c_{n+1}) - d(C, D)).$$

Where $\phi(d(c_n, c_{n+1})) = 0$ and hence $d(c_n, c_{n+1}) = 0$, contradicts our assumption.

Therefore $d(c_{n+1}, c_{n+2}) < d(c_n, c_{n+1})$ for any $n \in N$ and hence $\{d(c_n, c_{n+1})\}$ is MDS of NNRN and there is $s \ge 0$ such that $\lim_{n \to \infty} d(c_n, c_{n+1}) = s$.

From (3), for any $n \in N$, we get

$$\psi(d(c_{n+1}, c_{n+2})) \le \psi(M(c_n, c_{n+1}) - d(C, D)) - \phi(M(c_n, c_{n+1}) - d(C, D))$$

As $n \to \infty$ in the above equation and using ψ and ϕ we get

$$\psi(s) \le \psi(s) - \phi(s)$$
 which implies $\phi(s) = 0$

Hence
$$\lim_{n\to\infty} d(c_n, c_{n+1}) = 0$$
....(5)

Next we show that $\{c_n\}$ is a CS.

Otherwise there is $\varepsilon > 0$, for which we can get two sequences of $PI(m_k)$ and (n_k) s.t for all $PIm_k > n_k > k$, $d(c_{m_k}, c_{n_k}) \ge \varepsilon$ and $d(c_{m_k}, c_{n_{k-1}}) < \varepsilon$.

Now
$$\varepsilon \le d(c_{m_k}, c_{n_k}) \le d(c_{m_k}, c_{n_{k-1}}) + d(c_{n_{k-1}}, c_{n_k}),$$

$$\varepsilon \leq d(c_{n_k}, c_{n_k}) < \varepsilon + d(c_{n_{k-1}}, c_{n_k})$$

As $k \to \infty$ in the above equation and using (5) we get

$$\lim_{k \to \infty} d(c_{m_k}, c_{n_k}) = \varepsilon. \tag{6}$$

Again
$$d(c_{m_k}, c_{n_k}) \le d(c_{m_k}, c_{m_{k+1}}) + d(c_{m_{k+1}}, c_{n_{k+1}}) + d(c_{n_{k+1}}, c_{n_k}).$$

As $k \to \infty$ in the above equations and using (5) and (6) we get

$$\lim_{k \to \infty} d(c_{m_{k+1}}, c_{n_{k+1}}) = \varepsilon. \tag{7}$$

ISSN PRINT 2319 1775 Online 2320 7876

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 202

Again
$$d(c_{m_k}, c_{n_k}) \le d(c_{m_k}, c_{n_{k+1}}) + d(c_{n_{k+1}}, c_{n_k})$$

Letting $k \to \infty$ in the above equations and using (5) and (6) we get

$$\lim_{k \to \infty} d(c_{m_k}, c_{n_{k+1}}) = \varepsilon. \tag{8}$$

$$\lim_{k \to \infty} d(c_{n_k}, c_{m_{k+1}}) = \varepsilon \tag{9}$$

For $c = c_{m_k}$, $d = c_{n_k}$ we have

$$d(c_{m_k}, Tc_{m_k}) - d(C, D) \le d(c_{m_k}, c_{m_{k+1}}) + d(c_{m_{k+1}}, Tc_{n_k}) - d(C, D)$$

$$= d(c_{m_k}, c_{m_{k+1}})$$

Similarly $d(c_{n_k}, Tc_{n_k}) - d(C, D) = d(c_{m_k}, c_{n_{k+1}})$ and

$$d(c_{m_k}, Tc_{m_k}) - d(C, D) = d(c_{n_k}, c_{m_{k+1}})$$

From (1) we get $\psi(d(c_{m_{k+1}}, c_{n_{k+1}})) = \psi(d(Tc_{m_k}, Tc_{n_k}))$

$$\leq \psi(M(c_{m_{k+1}}, c_{n_{k+1}}) - d(C, D)) - \phi(M(c_{m_{k+1}}, c_{n_{k+1}}) - d(C, D)) - Lm(c_{m_{k+1}}, c_{n_{k+1}}) - d(C, D) - Lm(c_{m_{k+1}}, c_{n_{k+1}}) - d(C, D)$$

Where
$$M(c_{m_{k+1}}, c_{n_{k+1}}) = max\{d(c_{m_k}, c_{m_{k+1}}), d(c_{m_k}, Tc_{m_k}), d(c_{m_{k+1}}, c_{n_{k+1}})\}$$

$$m(c_{m_{k+1}}, c_{n_{k+1}}) = min\{d(c_{m_k}, c_{m_{k+1}}), d(c_{m_k}, Tc_{m_k}), d(c_{m_{k+1}}, c_{n_{k+1}})\}$$

Recalling (5), (6), (7) and (8) and let $k \to \infty$ in the above equations and using ψ and ϕ , we get

$$\psi(\varepsilon) \le \psi(\varepsilon) - \phi(\varepsilon) + 0....(11)$$

Thisleads to $\phi(\varepsilon) = 0$ and hence $\varepsilon = 0$.

This contradicts our assumption.

Hence $\{c_n\}$ is a CS.

Since $\{c_n\} \subset C$ and C is a CSS of the CMS(M, d), there is c^* in C s.t $c_n \to c^*$.

Taking $c = c_n$ and $d = c^*$ and since

$$d(c_n, Tc^*) \le d(c_n, c^*) + d(c^*, Tc_n)$$
 and

$$d(c^*, Tc_n) \leq d(c^*, Tc^*) + d(Tc^*, Tc_n)$$

We get $\psi(d(c_{n+1}, Tc^*) - d(C, D) \le \psi d(Tc_n, Tc^*))$

$$\leq \psi(M(c_n, c^*) - d(C, D)) - \phi(M(c_n, c^*) - d(C, D)) + Lm(c_n, c^*) - d(C, D)$$

As the limit $n \to \infty$ in equations and using ψ and ϕ , we get

$$\psi(d(c^*, Tc^*) - d(C, D)) \le \psi(d(c^*, Tc^*) - d(C, D)) - \phi(d(c^*, Tc^*) - d(C, D)) + Ld(c^*, Tc^*) - d(C, D)$$

This implies that $d(c^*, Tc^*) = d(C, D)$

Hence c^* is a BPP of T.

ISSN PRINT 2319 1775 Online 2320 7876

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

To prove uniqueness

Let c and d be two BPP and assumethat $c \neq d$,

Taking c = e and d = f in (1) we get

$$\psi(d(T_e, T_f)) \le \psi(d(e, f) - d(C, D)) - \phi(d(e, f) - d(C, D)) + Lm(e, f) - d(C, D)$$

By ψ and ϕ there is a contradiction.

Therefore e = f

Corollary: 2.1

Let (M, d) be a HS and CRMS and Let (C, D) be a pair of closed subsets of MSs.t C_0 is nonempty. Let $T: C \to D$ be a map that satisfies $T(C_0) \subset D_0$. Suppose

$$\psi(d(Tc, Td)) \le \psi(M(c, d) - d(C, D)) - \phi(M(c, d) - d(C, D)).....(12)$$

for all $c \in C$, $d \in D$ where ψ , $\phi \in \Psi$ and ψ is taken as ND and $M(c,d) = max\{d(c,d), d(c,Tc), d(d,Td)\}$

$$M(c,d) = max\{d(c,d), d(c,Tc), d(d,Td)\}$$

Then *T* has a BPP.

Proof

Observe

$$\psi(d(Tc,Td)) \le \psi(M(c,d) - d(C,D)) - \phi(M(c,d) - d(C,D))$$

$$\leq \psi(M(c,d) - d(C,D)) - \phi(M(c,d) - d(C,D)) + Lm(c,d) - d(C,D)$$
 for some $L > 0$

Then by the Result 2.1, *T* has a BPP.

Corollary: 2.2

Let (M, d) be a HS and CRMS and Let (C, D) be a pair of subsets of MSs.t C_0 is nonempty. Let $T: C \to D$ be a map satisfy $T(C_0) \subset D_0$. Suppose

$$d(Tc, Td) \le k \max\{d(c, d), d(c, Tc), d(d, Td)\}...$$
 (13)

for all $c \in C$, $d \in D$ for $0 \le k < 1$.

Then T has a BPP.

Proof

Let
$$\psi(t) = t$$
 and $\phi(t) = (1 - k)t$.

Byusing the Result2.2T has a BPP.

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

Corollary: 2.3

Let (M, d) be a HS and CRMS and Let (C, D) be a pair of subsets of MSs.t C_0 is nonempty. Let $T: C \to D$ be a map satisfy $T(C_0) \subset D_0$. Suppose

$$d(Tc,Td) \leq k[\{d(c,d) + d(c,Tc) + d(d,Td)\} - d(C,D)] + Lmin[d(c,d) + d(c,Tc) + d(d,Td)]....(14)$$

for all $c \in C$, $d \in D$ and $0 \le k < \frac{1}{3}$ and L > 0.

Then T has a BPP.

Proof

Clearly,
$$k[\{d(c,d) + d(c,Tc) + d(d,Td)\} - d(C,D)] + L \min\{d(c,Tc), d(d,Td), d(c,Td), d(d,Tc)\}$$

 $\leq 3k \max\{d(c,d), d(c,Tc), d(d,Td)\} + L \min\{d(c,Tc), d(d,Td), d(d,Tc)\}$

Taking $\psi(t) = t$ and $\phi(t) = (1 - 3k)t$.

By the Result 2.1, *T* has a BPP.

Corollary: 2.4

Let (M, d) be a HS and CRMS and Let (C, D) be a pair of subsets of MSs.t C_0 is nonempty. Let $T: C \to D$ be a map satisfy $T(C_0) \subset D_0$. Suppose

$$d(Tc, Td) \le \psi(M(c, d) - d(C, D)) - \phi(M(c, d) - d(C, D)) + Lm(c, d) - d(C, D). \tag{15}$$

for all $c \in C$, $d \in D$ where $M(c, d) = max\{d(c, d), d(c, Tc), d(d, Td)\}$

$$m(c,d) = \min\{d(c,d), d(c,Tc), d(d,Td)\}\$$

Then T has a BPP.

Proof: Let $\psi(t) = t$

By the Result 2.1, T has a BPP.

Example: 2.1

Let
$$C \cup D = M$$
, where $C = \left\{\frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}\right\}D = \{1, 2\}$

Define the GMS M as follows:

$$d(\frac{1}{4}, \frac{1}{5}) = d(\frac{1}{6}, \frac{1}{7}) = 0.05$$

$$d(\frac{1}{4}, \frac{1}{7}) = d(\frac{1}{5}, \frac{1}{6}) = 0.03$$

ISSN PRINT 2319 1775 Online 2320 7876

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

$$d(\frac{1}{4}, \frac{1}{6}) = d(\frac{1}{5}, \frac{1}{7}) = 0.08$$

$$d(\frac{1}{5}, \frac{1}{5}) = d(\frac{1}{6}, \frac{1}{6}) = 0$$

and d(c,d) = |c-d| - d(C,D) if $c,d \in D$ (or) $c \in C,d \in D$ (or)

$$c \in D, d \in C$$
.

Obviously d does not holdTon C. Indeed

$$0.08 = d(\frac{1}{4}, \frac{1}{6}) \ge d(\frac{1}{4}, \frac{1}{5}) + d(\frac{1}{5}, \frac{1}{6}) = 0.08$$

RMS holds, and d is a RM.

Let $T: C \to D$ be defined as

$$Tc = \begin{cases} \frac{1}{7}, & if \ c \in [1,2] \\ \frac{1}{6}, & if \ c \in [\frac{1}{4}, \frac{1}{5}, \frac{1}{6}] \\ \frac{1}{5}, & if \ a = \frac{1}{7} \end{cases}$$

Taking $\Psi(t) = t$ and $\phi(t) = \frac{t}{7}$.

TSatisfies the Result 2.1 and has a BPP d(c, d) = d(C, D)

References

- [1] Abedelijawad.T, Karapinar.E, Tas.K,Existence and uniqueness of a common fixed point on partial metric spaces, Appl.Math.Lett 24,1900-1904 (2011).
- [2] Arul Ravi. S, Best Proximity Point Theorem for (ψ, ϕ) Contractions. International Journal of Mathematics Archive, 11(9) 2020, 1-4.
- [3]Aydi.H, Karapinar.E, Shatanawi.W, Coupled fixed point results for (ψ, ϕ) weakly contractive condition in ordered partial metric spaces. Comput.Math.Appl 62, 4449-4460 (2011).
- [4] Radenovic.S, Rakocavic.V,Rasapour.S, common fixed points for (g, f)type maps in cone metric spaces. Appl.Math.Compact 218, 480-491 (2011).
- [5] Borinda.V, Acommon fixed point theorem for compatible quasi contractive self-mappings in metric spaces. Appl.Math.comput. 213,348-354(2009).
- [6]Cric.I, Abbas.M, Saadati.R, Hussain.N, common fixed points of almost generalized contractive mappings inordered metric spaces. Appl.Math.Comput. 217,5784-5789 (2011).
- [7]Mathews.SG, Partial Metric Topology, Research Report 212, Department of computer science, University of Warwick (1992).
- [8] Mathews.SG, Partial Metric Topology, In.Proc. 8th Summer conference on General Topology and Applications.Anals of the new YorkAcademi of sciences, vol 728 PP 183-197 (1994).

ISSN PRINT 2319 1775 Online 2320 7876

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

- [9] Karapinar.E, Erhan.IM, Fixed point theorems for operation on partial metric spaces, Appl.Math.Lett 24 1894-1899 (2011).
- [10] Karapinar.E, Generalization Caristi Kirk's theorem on partial metric spaces, Fixed point theory Appl.2011,4(2011) doi 10:1,96 1687-1812:2011,4.
- [11] Karapinar.E, Erhan.IM, YidizULas, A fixed point theorem for cyclic maps on partial metric spaces, Appl.Math.Inf.Sci 6, 239-244 (2012).
- [12]Branciari.A, A fixed point theorem of Banach Caccippolitypeona class of generalized metric spaces.Publ.Math (Debr) 57, 31-37 (2000).
- [13]Das.P, A fixed point theorem on a class of generalized metric spaces. Korean J.Math.Sci 9, 29-33 (2002).
- [14]Das.P, A fixed point theorem in generalized metric spaces. Soochow. J. Math 33, 33-39 (2007).
- [15]Das.P,Lahiri.BK, Fixed point of LjubomirCirics quasi contraction mapping in a generalized metric spaces.publ.Math [Debr] 61, 589-594 (2002).
- [16]Das.P, Lahiri.BK, Fixed point of contractive mappings in generalized, etricspaces.Math.Slovaca 59 499-504(2009).
- [17] Azam.A, Arshad.M, Kannan fixed point theorems on generalized metric spaces, J Nonlinear Sci.Appl.1 45-48 (2008).
- [18] Azam.A, Arshad.M, Beg.I, Banach contraction principle on cone rectangular metric spaces. Appl.Anal.Discrete Math,3, 236-241 (2009).
- [19]Boyd.D.W, Wong.J.S.W, On nonlinearcontractions. Proc.Am.Math.Soc, 20, 458-464 (1969).
- [20] Alber.YI, Guerre.D.S, principles of weakly contractive maps in Hilbert spaces.In.Gohberg.I, Lyubich (eds) New results in Operator Theory.Advances and Appl. Vol 98, PP:7-22, Brikhouser, Basel (1997).
- [21]Karapinar.E, Fixed point theory for cyclic weak ϕ –contractive. Appl.Math.Lett 24, 822-255(2011).
- [22]Rhodes.BE, some theorem on weakly contractive maps.NonlinearAnal.TMA 47. 2683-2693 (2001), Proceedings of the third world congress of Nonlinear Analysis,Part 4. Catania (2000).
- [23]Karapinar.E, Sadarangani.K, Fixed point theory for cyclic (ψ, ϕ) –contractions. Fixed point theory Appl.2011, 69(2011) doi: 10, 1186/1687-1812.(2011)69.
- [24]Karapinar.E,Best proximity points of Kannan type cyclic weak ϕ –contractions in ordered metric spaces. An Univ.Ovidus Constanta (press).
- [25]SankarRaj.V, A best proximity point Theorem for Weakly contractive non-self mappings, Nonlinear Analysis, 74 (2011) 4804-4808.