Some sets closer to new closed sets in ideal topological space

V. BEULAH, Department of Mathem atics, Sarah Tucker College., beulahsamuel26@gmail.com

JESSIE THEODORE, Department of Mathem atics, Sarah Tucker College.

D. PREMALATHA, Department of Mathematics, Rani Anna Government College for Women. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India

ABSTRACT: In this paper we have defined and proved that the $_{aB}$ **I*-closure is a Kuratowski

closure operator on the ideal topological space (X, τ , I). Also, we have introduced $_{a\beta^*}I$ -

kernel, $_{g\beta^*}I$ -derived set, $_{g\beta^*}I$ -Border, $_{g\beta^*}I$ -Frontier and $_{g\beta^*}I$ -Exterior. Its characterization and properties investigated and explored in ideal topological space.

Keywords: ideal, $_{g\beta^*}I$ -closed set, $_{g\beta^*}I$ -closure, $_{g\beta^*}I$ - interior.

1.INTRODUCTION

Local function in topological space using ideals was introduced by Kuratowski . The notion of ideal topological spaces was studied by Kuratowski [10] and Vaidyanathaswamy . Jankovi'c and Hamlett investigated further properties of ideal topological spaces. The generalized closed set in ideal topological spaces namely $_{g\beta^*}I$ -closed set has already been introduced . The aim of this paper is to prove that the $_{g\beta^*}I$ -closure is a Kuratowski closure operator on the ideal topological space (*X*, τ , *I*). Also, we have introduced $_{g\beta^*}I$ -kernel, $_{g\beta^*}I$ -derived set, $_{g\beta^*}I$ -Border, $_{g\beta^*}I$ -Frontier and $_{g\beta^*}I$ -Exterior. In particular, its characterization and properties analyzed

2. PRELIMINARIES

An ideal *I* on a nonempty set *X* is a collection of subsets of *X* which satisfies the following properties: (i) $A \in I$ and $B \subseteq A$ implies $B \in I$ (heredity) (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$ (finite additivity). An ideal topological space is a topological space (X, τ) with an ideal *I* on *X*, and is denoted by (X, τ, I) . Given an ideal topological space (X, τ, I) and if P(X) is the set of all subsets of *X*, a set operator (.)* : $P(X) \to P(X)$, called a *local function* of *A* with respect to τ and *I*s defined as follows: for $A \subset X$, $A^*(J, \tau) = \{x \in X : U \cap A \notin I$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$, when there is no chance for confusion $A^*(I, \tau)$ is denoted by A^* . For every ideal topological space (X, τ, I) there exists a topology τ^* finer than τ , generated by the base $\beta(I, \tau) =$ $\{U \setminus K : U \in \tau \text{ and } K \in I\}$. In general, $\beta(I, \tau)$ is not a topology. A subset *A* of a space (X, τ) is β -open or semi-pre-open [1] set if $A \subset cl(int(cl(A)))]$. The complement of β -open or semi-pre-open set is β -closed or semi-pre-closed. The semi pre-closure of a subset *A* of *X*, denoted by spcl(A) is defined to be the intersection of all semi-pre-closed sets containing *A*. The semi pre-interior of a subset *A* of *X*, denoted by spint(A) is defined to be the union of all semi-pre-open sets contained in *A*.

Lemma 2.1 [12]*Let* (*X*, τ , *I*)*be an ideal topological space and* $A \subseteq X$. *If* $A \subset A^*$, *then* $A^* = cl(A^*) = cl^*(A) = cl(A)$.

Definition 2.2 [16] Let (X,τ) be a topological space. A subset A of X is said to be ω -closed if

 $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

Definition 2.3 [16] A space (X, τ) is called a T_{ω} –space if every ω -closed set in it is closed.

Definition 2.4 [9] Given a topological space (X, τ) with an ideal Ion X and if P(X) is the set of all subsets of X, a set operator $(.)^{**} : P(X) \to P(X)$, called a *semi-pre local function* or β -local *function* of A with respect to τ and \mathcal{I} is defined as follows: for $A \subset X$, $A_{**}(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \beta O(x)\}$ where the family of semi-preopen sets $\beta O(x) = \{U \in \beta O(X) : x \in U\}$, when there is no ambiguity, we will write simply A_{**} for $A_{**}(I, \tau)$.

Lemma 2.5 [9] Let (X, τ, I) be an ideal space and A, B subsets of X. Then, for the β -local function, the following properties hold:

- 1. If $A \subset B$, then $A_{**} \subset B_{**}$.
- 2. $A_{**} = spcl(A_{**}) \subset spcl(A)$ and A_{**} is β -closed in X.
- 3. $(A_{**})_{**} \subseteq A_{**}$
- 4. $(A \cup B)_{**} = A_{**} \cup B_{**}$
- 5. $(A \cap B)_{**} = A_{**} \cap B_{**}$

Definition 2.6 [9] A subset A of an ideal space (X, τ, I) is said to be ${}_{g\beta^*}I$ -closed set if $A_{**} \subseteq int(U)$ whenever $A \subseteq U$ and U is ω -open in X. The complement of ${}_{g\beta^*}I$ -closed set is said to be ${}_{g\beta^*}I$ -open. The family of all ${}_{g\beta^*}I$ -open sets is denoted by ${}_{g\beta^*}I\mathcal{O}(X, \tau)$.

Definition 2.7 [9] A subset A of an ideal space (X, τ, I) is said to be

- 1. semi-pre *- closed if $A_{**} \subseteq A$.
- 2. *-semi-pre dense if $A \subseteq A_{**}$.
- 3. semi-pre *- perfect if $A_{**} = A$.

Remark 2.8 [9] Every closed (resp. open) set is ${}_{g\beta*}I$ -closed (resp. ${}_{g\beta*}I$ -open) set. **Lemma 2.9 [9]** In an ideal space (X, τ, I) ,

- (i) Every member of $Iis_{g\beta^*}I$ -closed.
- (ii) A_{**} is ${}_{g\beta^*}I$ -closed for every subset A of X.
- (iii) If $I = \{\phi\}$, then $A_{**} = spcl(A)$ and hence ${}_{g\beta^*}I$ -closed sets coincide with β^* -closed sets.

Theorem 2.10 [9]*Let* (X, τ, I) *be an ideal topological space and* $A \subseteq X$ *. Then the following statements (1), (2) and (3) are equivalent and (3) implies (4) and (5) which are equivalent. (3) implies (1) if (X, \tau) is a T_{\omega}- space.*

- 1) A is $_{g\beta^*}I$ -closed.
- 2) $spcl(A_{**}) \subseteq int U for every \omega$ -open set U containing A.
- 3) For all $x \in spcl(A_{**})$, $\omega cl(\{x\}) \cap A \neq \varphi$
- 4) $spcl(A_{**}) A$ contains no non empty ω -closed set.
- 5) A_{**} Acontains no non empty ω -closed set.

Lemma 2.11 [9] If A and B are subsets of (X, τ, I) then $(A \cap B)_{**} \not\subset A_{**} \cap B_{**}$ **Remark2.12 [9]** Every *-closed set is semi-pre-*-closed but not conversely, since $A_{**} \subseteq A_* \subseteq A^* \subseteq A$.

3. $_{aB^*}I$ -closure and $_{aB^*}I$ -interior in ideal topological space

Research Paper

Definition3.1: For every set $E \subset X$, we define the ${}_{g\beta^*}I$ -closure of E to be the intersection of all ${}_{g\beta^*}I$ -closed sets containing E.

In symbols, $_{g\beta^*}Icl(E) = \cap \{A : E \subset A, A \in _{g\beta^*}IC\ell(X,\tau)\}$ where $_{g\beta^*}IC(X,\tau)$ is the family of all $_{a\beta^*}I$ -closed sets in *X*.

Lemma 3.2: For any $E \subset X$, $E \subset {}_{g\beta^*}Icl(E) \subset cl(E)$.

Proof: Follows from the Remark 2.8.

Lemma 3.3: If $A \subset B$, then $_{g\beta^*}Icl(A) \subset _{g\beta^*}Icl(B)$

Proof: Clearly follows from Definition 3.1.

Remark 3.4: $_{g\beta^*}I$ -closure of a set need not be $_{g\beta^*}I$ -closed.

Theorem 3.8: If $_{g\beta*}IC\ell(X,\tau)$ is closed under finite union and intersection, then $_{g\beta*}I$ -closure is a Kuratowski closure operator on X.

Proof: Since ϕ and $Xare_{g\beta^*}I$ -closed, by Lemma 3.6, we get_{g\beta^*}Icl(ϕ) = ϕ and

$$_{a\beta^*}Icl(X) = X.$$

(1) $E \subset {}_{a\beta^*}Icl(E)$, by Lemma 3.2.

(2) Suppose E and F are two subsets of X, then by Lemma 3.3, we get

 $_{g\beta^*}Icl(E) \subset _{g\beta^*}Icl(E \cup F)$ and $_{g\beta^*}Icl(F) \subset _{g\beta^*}Icl(E \cup F)$. Hence $_{g\beta^*}Icl(E) \cup _{g\beta^*}Icl(F) \subset _{g\beta^*}Icl(E \cup F)$. Let *E* be a subset of *X* and *A* be an $_{g\beta^*}I$ -closed set containing *E*. Then by

Definition 3.1, ${}_{g\beta^*}Icl(E) \subset A$ and ${}_{g\beta^*}Icl({}_{g\beta^*}Icl(E)) \subset A$. Hence, ${}_{g\beta^*}I$ -closure is a Kuratowski closure operator on X if ${}_{g\beta^*}IC\ell(X,\tau)$ is closed under finite union and intersection.

Definition 3.9: Let $\tau_{g\beta^*I}$ be the topology on *X* generated by $_{g\beta^*I}$ -closure in the usual manner. That is, $\tau_{g\beta^*I} = \{U : g\beta^*Icl(U^C) = U^C\}.$

Proposition 3.10: $If_{g\beta^*}IC\ell(X,\tau)$ is closed under finite union and intersection, then $\tau_{g\beta^*}I$ is a

topology for X.

Proof: By Theorem 3.8, ${}_{g\beta^*}I$ -closure satisfies the Kuratowski closure axioms, $\tau_{g\beta^*I}$ is a topology on *X*.

Proof: Clearly follows from the Definition 3.12.

Remark 3.16:*The converse of the Proposition 3.15 is not true as seen from the following example.*

Example 3.17:Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a, b\}\}$ and the ideal $I = \{\phi, \{c\}\}$. For the set $A = \{c, d\}, _{a\beta^*}I int(\{c, d\}) = \{c, d\}$ but $A = \{c, d\}$ is not $_{a\beta^*}I$ -open.

4. CONCLUSION

In this paper we have defined and proved that the ${}_{g\beta^*}I$ -closure is a Kuratowski closure operator on the ideal topological space (X, τ, I) .Furthermore, we have introduced ${}_{g\beta^*}I$ -kernel, ${}_{g\beta^*}I$ derived set, ${}_{g\beta^*}I$ -Border, ${}_{g\beta^*}I$ -Frontier and ${}_{g\beta^*}I$ -Exterior. In particular its characterization and properties investigated and explored in ideal topological space.

Conflicts of interest :The authors declare that there is no conflicts of interests.

REFERENCES

- [1] D. Andrijevi'c, Semi-preopen sets, Mat. Vesnik, Vol.38, pp.24–32, (1986).
- [2] V. Beulah, Jessie Theodore and D. Premalatha, *Characterizations of* β -*Compatible Topology with an Ideal*, Design Engineering (Toronto), 8 (2021), pp. 6916 6935.
- [3] J. Dontchev, Idealization of Ganster Reilly Decomposition Theorems, Math.GN/990-1017, (5), Jan.1999.