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ABSTRACT  

The cultivation of rubber trees in Kerala is an important part of the agricultural sector, which in turn 

helps to boost the local economy and provide jobs. Accurate forecasting of rubber output is vital for 

successful resource management and informed decision-making in the rubber sector because of the 

volatility of rubber pricing and the impact of many factors on rubber production. For the purpose of 

forecasting rubber output in Kerala, this study compares the Auto Regressive Integrated Moving 

Average (ARIMA) and Seasonal Auto Regressive Integrated Moving Average (SARIMA) models. The 

study intends to evaluate the performance of both models in predicting rubber output by using historical 

data and taking into account a variety of seasonal and non-seasonal elements, providing useful insights 

into the best-suited technique for robust and accurate forecasting. 

Keywords:  Rubber, ARIMA, SARIMA, Forecast. 

INTRODUCTION  

Rubber production in Kerala, a state located in the southwestern portion of India, is a substantial 

contribution to the economy of Kerala. The state is also known as "God's Own Country." The state of 

Kerala is well-known for its verdant landscapes, copious amounts of rainfall, and agreeable climate, all 

of which combine to produce the ideal circumstances for the growth of rubber. The success of the rubber 

sector is essential to the well-being of a large number of locals as well as the economic growth of the 

region as a whole. It is crucial for rubber farmers, other stakeholders, and policymakers to have accurate 

projections of rubber production in order to plan and manage resources effectively, make decisions 

about the market that are informed and encourage the sustainable expansion of the business. 
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This work explores the field of rubber production prediction utilizing sophisticated techniques for 

modeling time series in order to respond to the urgent requirement that has been identified. In order to 

develop accurate forecasts, historical data on rubber output, along with other pertinent parameters such 

as climate variables and socioeconomic indicators, are utilized. Both the AutoRegressive Integrated 

Moving Average (ARIMA) and the Seasonal ARIMA (SARIMA) time series models are applied in this 

study, and their ability to accurately forecast rubber output trends in Kerala is compared. Accurate 

projections may create resilience, sustainability, and profitability in the rubber business, which can 

ultimately help the entire economy of Kerala. This research is vital not only for the rubber industry but 

also for the state's general agricultural environment. 

OBJECTIVE  

This study aims to anticipate rubber production in Kerala, India, by contrasting the performance of two 

well-known time series models, the AutoRegressive Integrated Moving Average (ARIMA) and the 

Seasonal ARIMA (SARIMA). In particular, this research hopes to: 

• One, research prior trends and patterns in Kerala's rubber output by looking at available 

historical data. 

• To reliably predict future rubber output, use the ARIMA and SARIMA models. 

• Third, evaluate the predicted accuracy and robustness of the ARIMA and SARIMA models and 

compare them. 

• The seasonal fluctuations and long-term trends in rubber production are examined, and each 

model's ability to capture these variables is evaluated. 

• Fifth, to make the predicting results more understandable, explain how climate, economic data, 

and farming methods could affect rubber production. 

• Based on the comparison of the ARIMA and SARIMA models, provide recommendations and 

guidelines for stakeholders such as rubber farmers, policymakers, and industry actors to aid in 

making educated decisions and plans in the rubber sector. 

LITERATURE REVIEW  

Cherdchoongam and Rungreunganun (2016) used the Autoregressive Integrated Moving Average 

(ARIMA) model to predict Thai natural rubber prices. This research likely examined historical price 

data, market patterns, and worldwide demand, supply dynamics, and economic indicators affecting Thai 

natural rubber prices. The researchers used the ARIMA model to help Thai rubber sector stakeholders 

make production planning, pricing, and risk management choices. The study's conclusions may have 

improved the Thai natural rubber market's efficiency and competitiveness, helping local producers and 

the economy. 
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Using the Autoregressive Integrated Moving Average (ARIMA) model, Zahari et al. (2018) predicted 

Malaysian natural rubber prices. The research presumably examined historical price data, market 

demand, supply dynamics, and macroeconomic aspects that affect natural rubber prices. The researchers 

used the ARIMA model to create a strong and reliable forecasting framework for Malaysian rubber 

sector stakeholders. This study may have helped rubber industry players make educated judgments by 

developing effective pricing strategies, risk management tactics, and policy interventions. The findings 

may also affect the agricultural sector because natural rubber is vital to automotive, manufacturing, and 

construction industries. 

Ghani and Rahim (2019) analyzed Malaysia's natural rubber price volatility and forecasted it. Their 

study presumably used the Autoregressive Moving Average-Generalized Autoregressive Conditional 

Heteroskedasticity (ARMA-GARCH) model, a popular framework for financial and commodity market 

volatility. Researchers investigated the complex dynamics of natural rubber price movements to 

understand the patterns and risk factors driving rubber price volatility in Malaysia. To help natural 

rubber players understand market dynamics and make better judgments, the study's findings may have 

improved risk management and decision-making. 

 

 

 

METHODOLOGY  

ARIMA Model (p,d,q): 

The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class 

of models for forecasting a time series. These models can be made to be "stationary" by differencing (if 

necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if 

necessary), and they can also be used to predict the future. When all of a random variable's statistical 

qualities remain the same across time, we refer to that random variable's time series as being stationary.  

A stationary series does not have a trend, the variations around its mean have a constant amplitude, and 

it wiggles in a consistent manner. This means that the short-term random temporal patterns of a 

stationary series always look the same in a statistical sense.  This last criterion means that it has 

maintained its autocorrelations (correlations with its own prior deviations from the mean) through time, 

which is equal to saying that it has maintained its power spectrum over time.  The signal, if there is one, 

may be a pattern of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, 

and it could also include a seasonal component. A random variable of this kind can be considered (as is 

typical) as a combination of signal and noise, and the signal, if there is one, could be any of these 
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patterns.  The signal is then projected into the future to get forecasts, and an ARIMA model can be 

thought of as a "filter" that attempts to separate the signal from the noise in the data. 

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation 

in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors.  That 

is: 

Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or 

a weighted sum of one or more recent values of the errors. 

It is a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are 

lagging values of Y. An autoregressive model is essentially a special example of a regression model, and 

it may be fitted using software designed specifically for regression modeling.  For instance, a first-order 

autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in which the 

independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphics and 

Y_LAG1 in RegressIt, respectively).  Because there is no method to designate "last period's error" as an 

independent variable, an ARIMA model is NOT the same as a linear regression model. When the model 

is fitted to the data, the errors have to be estimated on a period-to-period basis. If some of the predictors 

are lags of the errors, then an ARIMA model is NOT the same as a linear regression model.  The fact 

that the model's predictions are not linear functions of the coefficients, despite the fact that the model's 

predictions are linear functions of the historical data, presents a challenge from a purely technical point 

of view when employing lagging errors as predictors.  Instead of simply solving a system of equations, it 

is necessary to use nonlinear optimization methods (sometimes known as "hill-climbing") in order to 

estimate the coefficients used in ARIMA models that incorporate lagging errors. 

Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that 

must be differentiated to become stationary is a "integrated" version of a stationary series, whereas lags 

of the stationarized series in the forecasting equation are called "autoregressive" terms and lags of the 

prediction errors are called "moving average" terms. Special examples of ARIMA models include the 

random-walk and random-trend models, the autoregressive model, and the exponential smoothing 

model. 

A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where: 

• p is the number of autoregressive terms, 
• d is the number of nonseasonal differences needed for stationarity, and 
• q is the number of lagged forecast errors in the prediction equation. 

• The forecasting equation is constructed as follows.  First, let y denote the dth difference of Y, 

which means: 
• If d=0:     𝑦𝑡 = 𝑌𝑡 
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• If d=1:   𝑦
𝑡

= 𝑌𝑡 − 𝑌𝑡−1 

• If d=2:  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2  
• Note that the second difference of Y (the d=2 case) is not the difference from 2 periods 

ago.  Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a 

second derivative, i.e., the local acceleration of the series rather than its local trend. 
• In terms of y, the general forecasting equation is: 

• �̂�𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis 

technique used for forecasting data points based on the historical values of a given time series. It 

consists of three key components: AutoRegression (AR), Integration (I), and Moving Average (MA). 

 

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE 

FOLLOWING STEPS: 

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and 

variance of the series do not change over time. Stationarity is essential for ARIMA modeling. 

2. Differencing: If the data is not stationary, take the difference between consecutive observations to 

make it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number 

of differencing required to achieve stationarity. 

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and q, where p 

represents the number of autoregressive terms, d represents the degree of differencing, and q represents 

the number of moving average terms. 

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the 

coefficients of the model. 

5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any 

remaining patterns or correlations, and ensuring that the model adequately captures the underlying 

patterns in the data. 

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the 

time series. 
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SEASONAL ARIMA:  

By including seasonal variations into the ARIMA model, Seasonal ARIMA (SARIMA) is a robust 

technique for analyzing and forecasting time series data. It works well for examining and forecasting 

sales data, weather patterns, and economic indicators that are subject to seasonal changes. Financial 

markets, economics, and even meteorology all make use of SARIMA models. 

Mathematical Formulation:  

The SARIMA model is denoted as SARIMA(p,d,q)(P,Q,D)[s], where: 

• Non-seasonal autoregressive (p), differencing (d), and moving average (q) are the possible orders 

of analysis. 

• The seasonal autoregressive, differencing, and moving average orders are denoted by the letters 

P, D, and Q, respectively. 

• The length of one season is denoted by the symbol S. 

The SARIMA model can be represented as follows:  

 (1 − 𝜑1𝐵 − ⋯ − 𝜑𝑃𝐵𝑃)(1 − 𝜑1𝐵𝑉𝑆 − ⋯ − 𝜑𝑃𝐵𝑉𝑆)𝑃(𝐵𝑉𝑆)𝐷𝑌𝑡 

= (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑃𝐵𝜑)(1 + 𝜃1𝐵𝑉𝑆 + ⋯ + 𝜃𝑃𝐵𝜑𝑆)𝐴(𝐵𝜑𝑆)𝐾𝜀𝑡 

Where: 

• 𝜑𝑖and 𝜃𝑖 are the autoregressive and moving average parameters, respectively.  

• B and 𝐵𝑉𝑆 are the non- seasonal and seasonal backshift operators, respectively.  

• P,D,A and K are the orders of the seasonal autoregressive differencing, moving average, and 

backshift components, respectively.  

• 𝑌𝑡 represents the time series data at time t.  

• 𝜀𝑡   denotes the white noise error term.  

 

Real life application  

One example of how SARIMA might be put to use in the real world is in the process of predicting 

quarterly sales data for a retail organization. The sales data frequently display seasonal patterns because 

of things like the different holiday seasons and different promotional periods. The company is able to 

examine previous sales data, recognize seasonal patterns, and make more accurate projections of future 

sales by using a model called SARIMA. 
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Merits and Demerits: 

• When applied to time series data, SARIMA models are able to distinguish between seasonal and 

non-seasonal patterns. 

• They are useful when anticipating data with intricate seasonal trends because of their 

effectiveness. 

• The SARIMA models can be altered to accommodate a wide variety of seasonal data types, 

which lends them flexibility and adaptability. 

• They produce accurate estimates for forecasts ranging from the short to the medium term. 

• SARIMA models can be complicated, particularly when dealing with a number of different 

seasonal components, which calls for a substantial amount of computational resources. 

• Due to the complexity of the mathematical formulas, interpretation of the SARIMA results may 

be difficult for individuals who are not experts in the field. 

• For SARIMA models to generate reliable forecasts, a significant quantity of historical data is 

necessary; however, this data may not always be accessible for all forms of data. 

 

Preparation of Data: 

• Prepare the time series data for analysis by collecting and cleaning it such that it is consistent and 

has no outliers or missing values. 

• Applying a transformation or differentiating if necessary to reach stationarity. 

Identification of Models: 

• Determine the values of the AR and MA parameters during the season and the offseason by 

analyzing the ACF and PACF graphs. 

• Determine the differencing (d) and seasonal (D) orders required to achieve stationarity. 

Estimating Variables: 

• Apply the SARIMA model's estimated parameters using estimation strategies like maximum 

likelihood. 

• Iteratively fit the model while taking both seasonal and non-seasonal factors into account. 

Model Evaluation and Adjustment: 

• Examine diagnostic charts for evidence of residual randomness after a SARIMA model has been 

fitted to the data. 

• Analyze the residuals using autocorrelation functions (ACF) plots, histograms, and the Ljung-

Box test. 
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ANALYSIS  

ARIMA 

The rubber production time series data was put through an Augmented Dickey-Fuller test, and the result 

was a Dickey-Fuller statistic of -8.2206 with a p-value of 0.01. The results of the tests indicate that the 

rubber production data is stationary, therefore rejecting the null hypothesis of non-stationarity in favor 

of the alternative hypothesis of stationarity. 

Autocorrelation function (ACF) and partial autocorrelation function (PACF) tests were also performed 

to dig deeper into the stationarity and autocorrelation features of the time series data. Autocorrelation 

and partial autocorrelation functions (ACF and PACF) plots were analyzed to spot significant 

autocorrelation and partial autocorrelation patterns in the data, which helped in setting the right 

parameters for the time series model. 

Model Specification AIC Value 
ARIMA(2,0,2)(1,0,1)[12] with non-zero mean Inf 
ARIMA(0,0,0) with non-zero mean 4727.759 
ARIMA(1,0,0)(1,0,0)[12] with non-zero mean 4528.87 
ARIMA(0,0,1)(0,0,1)[12] with non-zero mean 4592.829 
ARIMA(0,0,0) with zero mean 5379.405 
ARIMA(1,0,0) with non-zero mean 4529.439 
ARIMA(1,0,0)(2,0,0)[12] with non-zero mean 4526.8 
ARIMA(1,0,0)(2,0,1)[12] with non-zero mean 4528.188 
ARIMA(1,0,0)(1,0,1)[12] with non-zero mean 4529.597 
ARIMA(0,0,0)(2,0,0)[12] with non-zero mean 4612.007 
ARIMA(2,0,0)(2,0,0)[12] with non-zero mean 4466.939 
ARIMA(2,0,0)(1,0,0)[12] with non-zero mean 4468.621 
ARIMA(2,0,0)(2,0,1)[12] with non-zero mean Inf 
ARIMA(2,0,0)(1,0,1)[12] with non-zero mean 4470.582 
ARIMA(3,0,0)(2,0,0)[12] with non-zero mean 4476.239 
ARIMA(2,0,1)(2,0,0)[12] with non-zero mean 4468.939 
ARIMA(1,0,1)(2,0,0)[12] with non-zero mean 4502.444 
ARIMA(3,0,1)(2,0,0)[12] with non-zero mean Inf 
ARIMA(2,0,0)(2,0,0)[12] with zero mean Inf 

Using the 'auto.arima' function, we automatically applied ARIMA modeling to the rubber production 

time series data, and the best-fitting model was found to be an ARIMA(2,0,0)(2,0,0)[12) with a non-zero 

mean. The best model was chosen after an initial round of model fitting in which approximations were 

made to speed up the process. When the model was re-fit without any approximations, it was found to be 
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the ARIMA(2,0,0)(2,0,0)[12) with a non-zero mean, which had previously been the model of choice. 

There is an AIC of 4467.081 for this model. 

Two autoregressive terms, no differencing, and two seasonal moving average terms, all with a 12-month 

seasonal period, make up the ARIMA(2,0,0)(2,0,0)[12] model. In order to accurately forecast and 

analyze the time series data for rubber production, this model can be used to capture the underlying 

patterns and dynamics that are present. 

The parameters of the ARIMA(2,0,0)(2,0,0)[12] model, which has been found to be optimal for the 

rubber production time series, are as follows: 

• We calculate autoregressive coefficients for the first and second lags, and they are 1.3773 and -

0.6304, respectively. 

• The first seasonal lag has an autoregressive coefficient of 0.1260, and the second has an 

autoregressive coefficient of 0.1927. 

• The model also includes a mean estimate that is greater than zero, coming in at 675086.08. 

These coefficients have respective standard errors of 0.0687, 0.0635, 0.0746 and 0.0925 and 21741.67. 

Essential to the ARIMA (2,0,0)(2,0,0)[12] model's structure and behavior are the coefficients. Rubber 

production time series are captured in full, including all temporal dependencies and seasonal variations, 

so that insightful analysis and accurate predictions can be made. 

Coefficients Value Standard Error 

ar1 0.3544 0.0732 

sma1 -0.1224 0.0672 

sma2 -0.2797 0.0500 

mean 484355.785 2827.468 

 

About 2.89e+09 is the estimated variance of the ARIMA (2,0,0)(2,0,0)[12] model. Unpredictable 

variation in the rubber production time series that cannot be explained by the model is represented by 

this number, which is a measure of residual variability or dispersion. The model's log likelihood is -

2227.54, which is a negative value. Additional information on the model's goodness of fit and 

complexity can be gleaned using the information criteria. We get an AIC of 4467.08, an AICc of 

4467.56, and a BIC of 4486.27 when we run the numbers three different ways. Models that strike a good 

balance between quality of fit and complexity are given preference by these criteria. The 

ARIMA(2,0,0)(2,0,0)[12] model seems to be appropriate for assessing and forecasting the rubber 

production time series data because its AIC, AICc, and BIC values are all small. 
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Parameter Value 
Variance 1.474e+09 (1.474 billion) 
Log Likelihood -2166.6 
AIC (Akaike Information Criterion) 4343.21 
AICc (Corrected Akaike Information Criterion) 4343.55 
BIC (Bayesian Information Criterion) 4359.2 

 

Month Point Forecast Lo 95 Hi 95 
Feb 2017 467915.5 392663.3 543167.7 
Mar 2017 482448.5 402609.4 562287.6 
Apr 2017 457193.8 376797.0 537590.6 
May 2017 496848.0 416381.4 577314.6 
Jun 2017 490641.7 410166.3 571117.0 
Jul 2017 487396.6 406920.1 567873.0 

Aug 2017 470806.4 390329.9 551283.0 
Sep 2017 494847.9 414371.3 575324.5 
Oct 2017 497845.0 417368.4 578321.6 
Nov 2017 498484.1 418007.5 578960.7 

The trend in expected rubber production over the next few months is rather consistent, with only modest 

swings. There is a clear declining tendency from February to June of 2017, followed by a modest 

upward trend from July to November of the same year. This trend indicates that rubber production may 

have experienced a short dip in the first part of the year due to unforeseen circumstances. After that, 

production seems to have stabilized and even increased, maybe pointing to a recovery in the rubber 

industry. These projections highlight the need to keep an eye on the many variables (climate, market 

demand, agricultural techniques, etc.) that affect rubber output in order to maintain a steady and 

sustainable growth rate. 
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Residuals were calculated from the anticipated rubber production statistics, and then subjected to the 

Box-Ljung test. A chi-squared test with 5 degrees of freedom gave a result of 5.4279%, which is 

statistically significant at the 0.3369% level. Based on this p-value, it appears that the residuals are 

generated by a random, random process (white noise). In this way, the model appears to accurately 

represent the underlying patterns and changes in the data on rubber production, which strengthens the 

credibility of the predicted values. 
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SARIMA 

The set of numbers reflects the annual tons of rubber produced in Kerala between 2002 and 2017. There 

is some seasonal variation in output, with an overall upward trend up to 2012 and then a sharp decline in 

2013. After that, production was relatively constant at a reduced level until 2015, when it finally began 

to rise. While there were dips in output, the general trend implies that output remained reasonably 

consistent in subsequent years. The underlying patterns or reasons affecting the variation in rubber 

production throughout the stated period would require additional investigation. 

Insightful patterns emerge in the aggregate statistics of rubber output in Kerala over the period of time 

between 2002 and 2017. During this time period, production ranged from a low of 438,630 metric tons 

to a high of 800,050 metric tons. Production averages out to 715,002 tons, which is where the median 

value is found. Overall average rubber output throughout these years was somewhat below the median 

of 674,243 metric tons, as indicated by the period's mean production. The distribution of the data around 

the median is depicted by the interquartile range, which ranges from 581,382 to 773,036 metric tons 

between the first and third quartiles. The distribution and central tendency of Kerala's rubber output over 

the selected time period can be inferred from these statistical indicators. 

The differenced logarithmic transformation of the time series data on rubber production in Kerala was 

subjected to the Augmented Dickey-Fuller (ADF) test. The statistical significance level for this test is 

0.3721, with the Dickey-Fuller value being -2.5256. There is insufficient evidence to reject the null 

hypothesis because the p-value is greater than the 0.05 threshold. We are unable to rule out the 

possibility that the differenced logarithmic data is not steady because of the presence of a unit root. This 

finding suggests that additional differencing or other treatments may be required to get the time series 

data to stationarity. 

Rubber production time series data from Kerala were logarithmically transformed, and an automatic 

ARIMA model was then fitted to these data, yielding a model of order zero. the expected variance was 

calculated to be 0.01309, leading to a log likelihood of 11.24. After doing the math, we get these results 

for the information criteria: AIC=-20.48, AICc=-20.17, and BIC=-19.77. This model order is indicative 

of first-order differencing, which may be necessary to ensure stationarity in the data prior to modeling. 

Coefficient Values  

𝜎2 0.01309 

log likelihood 11.24 

AIC -20.48 

AICc -20.17 

BIC -19.77 
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To evaluate the auto ARIMA model's fit to the logarithmically transformed rubber production time 

series data, we performed the Ljung-Box test on the model's residuals and found an X-squared value of 

2.0429 with 1 degree of freedom, yielding a p-value of 0.1529. There is no evidence to suggest the 

model is not well-fit, as indicated by the relatively high p-value, and the residuals do not show major 

autocorrelation. 

Coefficient Values  

𝑥2 2.0429 

df 1 

P-value 0.1529 

 

 

CONCLUSION  

Analysis using both ARIMA and SARIMA on the raw data for rubber production reveals that the time 

series model ARIMA(2,0,0)(2,0,0)[12] with non-zero mean best fits the raw data. Time series trends in 

the data are reflected in the model's coefficients. The p-value of 0.3659 from the Ljung-Box test 

indicates that there is no substantial autocorrelation in the residuals of the forecast data. In addition, the 

log-transformed rubber data showed a very stable time series behavior, as evidenced by the SARIMA 

analysis's output of an ARIMA(0,1,0) model. The autocorrelation of the residuals from this model was 

not significant (Ljung-Box test, p=0.1529). These results are consistent with the hypothesis that the 

selected models successfully represent the essential structures included in the data on rubber production. 
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