IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

A HYBRID FRAMEWORK FOR AUTOMATED CODE OPTIMIZATION AND
REDUNDANCY ELIMINATION

Prof. Tulshihar Patil', Prof. Dr. Shashank Joshi’

Research Scholer, Department of Computer Engineering, Bharati Vidyapeeth (Deemed to be
University) College of Engineering, Pune, India.

Professor, Department of Computer Engineering, Bharati Vidyapeeth (Deemed to be University)
College of Engineering, Pune, India.

'tbpatil@bvucoep.edu.in, 2shashank.Joshi@bharatividyapeeth.edu

ABSTRACT

Code optimization affects a program's efficiency and maintainability and is essential to software
performance. Conventional optimization efforts that rely exclusively on compilers do not address
problems that arise from the software's underlying structure or recurring code patterns, which
typically emerge during extensive software production. The authors present an innovative hybrid
framework that incorporates automated code optimization and redundancy elimination, facilitating
code quality improvement through static code analysis and clone detection. The framework finds
and identifies code that is repeated or has a similar structure by looking for both syntactic and
semantic similarities. Then, it uses transformation-based optimization to cut down on the extra
time it takes to run. To see if our approach is suitable for Java-based applications, we have made
a practical study. This study was based on some benchmark open-source software taken from the
real world and on some software repositories. Our Java program was able to surpass the optimized
native compiled code (less execution time by 15-25% and memory utilization by 15% mainly).
Such improvements give the hybrid approach not only a clear advantage to the program’s
functionality but also that the code is still easily readable and maintainable. This really opens the
way for the deployment of machine learning in the field of automation software optimization.

Keywords: Code optimization; Software quality; Static analysis; Redundancy reduction;
Automated refactoring; Program performance

1. INTRODUCTION

Maintainability and software performance are important considerations in contemporary software
development, especially as the complexity and scale of applications continue to increase.
Historically, compiler-based methods have been used to optimize code in order to increase
execution speed, memory usage, and runtime efficiency. However, because developers frequently
copy-paste, go through multiple development cycles, and use outdated code, such techniques are
typically unable to handle redundant or duplicate code fragments (Walker et al., 2019; Romano et

2718

g l B ’A [\I ‘S‘

- -

l._;\') nte |nulnnnnl l()ulnnl nl
’ oo od And Nutritic Sclo

mailto:1tbpatil@bvucoep.edu.in
mailto:2shashank.Joshi@bharatividyapeeth.edu

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

al., 2020). [1, 3, 27].

Repeating code fragments not only leads to an increase in a program's execution time but also
negatively affects the part of the program that is comprehended, maintained, and guaranteed to
stay stable for a certain period of time (Farmahinifarahani et al., 2019; Runwal & Waghmare,
2017). [5,17,26]. As a result, one of the major jobs of software developers is to locate these
duplicate pieces, also known as code clones, so as to perform a correct optimization. Moreover,
the existing clone detection tools and static analysis methods can be helpful to identify the code
and code similarity; however, they are usually constrained by the degree of automation, scalability,
or precision (Tukaram & U.M.B., 2019; Saini et al., 2019) [4,7].

In order to improve software quality and performance, anumber of recent studies have looked into
the possibility of combining static analysis with advanced detection frameworks. For instance, the
extremely intricate optimization processes for data analytics from the beginning to the end have
demonstrated the potential for deep hierarchical analysis and transformation-based optimization
techniques (Shaikhha et al., 2020) [2, 9]. Additionally, computerized tools for exactness research
and coding evaluation have provided infrastructures for the systematic identification of regularities
(Svajlenko & Roy, 2016; Abdallah et al., 2017) [22,21]. Redundancy detection, as one of the
automated code optimization tools for attaining noticeable gains in runtime and memory
efficiency, is still lacking.

The creators of this work, addressing the difficulties mentioned above, developed an optimized
hybrid framework as a new way of automatically optimizing the code and removing redundancies
[15,16]. Through the procedures of code static analysis and clone detection, the framework
identifies the redundancies found in the software and provides the necessary transformation-based
optimizations that cancel the execution overhead and facilitate software quality incrementally.
They ran their solution against typical Java programs and a selection of open-source projects[19,
20]. The test outcomes served to confirm that the approach considerably accelerates software
execution and optimizes resource usage [25]. This article is in line with the existing trend in the
field of automated software optimization, where the emphasis is shifting towards the use of
systematic, modular, and extensible techniques that have the potential to improve both the
performance and the maintainability of the software.

2. OBJECTIVE

1. The goal is to develop a method that uses clone detection to automatically find code fragments
with similar implementations and the effectiveness of strict code verification techniques.

2. One of the goals is to get program transformation techniques that might eventually shorten
program execution time and optimize resource usage, where partial redundancy elimination, loop
transformation, and dead code removal are the main areas of work.

2719

al Journal of
ritional Scloncos

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

3. Analyze the capacity of the framework to minimize the time of execution, memory usage, and
to facilitate the maintainability of the software by running benchmark programs as well as real -
world code repositories.

4. Comparing the hybrid optimization method with the conventional compiler optimization
techniques and existing tools to show the progress in software performance and maintainability
was an examination objective.

5. First of all, the intention is to create a clear and open 'method' that might be used as a basis of
further studies in areas such as the 'automatic code optimization', 'redundancy removal', and
'software performance enhancement'.

3. SCOPE AND METHODOLOGY

One of the main goals of the study is the enhancement of software performance, maintainability,
and overall code quality through the application of an automated code optimization and
redundancy removal process. The scope of the study encompasses:

1. Programming Languages: The method can still be adapted for other high-level languages, but
the main idea of the framework is to be Java-based programs.

2. Redundancy detection: finds duplicate or redundant code segments and further categorizes them
according to the type of cloning, including near-miss, parameterized, and precise clones.

3. Dead code removal, loop improvement, partial redundancy reduction, and code transformation are
some optimization techniques.

4. Tool Integration: Such a system can be connected directly to a compiler-based or static analysis
tool that is already in use in order to help the automation of the optimization process.

5. Evaluation Metrics: Records the positive changes in software maintainability, memory
consumption, execution time reduction, and the correctness of clone detection.

6. Research Limitations: These are the main points of emphasis of this framework - code
transformation and static analysis. Besides that, the authors of this paper do not consider program
slicing and dynamic runtime optimizations as the subjects of their research.

3.1 METHODOLOGY

The suggested study reveals a combined framework for code improvement that combines static code
analysis, clone detection, and transformation-based optimization techniques.

2720

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 IJFANS. All Rights Reserved 3[111g 1R 0[€GR @724 DI 5 T (€118 VI U1 T3 B U ETT TN | R A | .92

1. Code Acquisition &
= Preporessing Q

2. Redudancy Detection
(Hybrid Approach)

(Type 1/2 Clones)

Syntatic Analysis
</>

5. Evaluation &
Performance Measurement

Semantic Analysis @B
(Type 3/4 Clones) [#] Execution Time Reduction (23%)
| [Peak Memory Usage (15%)
1 & Maintainability Index (18%)

L

-
3. Optimization Framework 4. Optimization & Comparative Analysis
Framework

Partial Rendorincy £}
[Elimination] Loop p°4 L
Optimization

Partial Rendorincy
Elimination

Test Case Execution / Validation

>

Dead Code (%) Q Validation
Elimination

Incosiserices

Fig.1. Hybrid Framework Architecture Diagram for Automated Code Optimization and
Redundancy Removal

The main aim is to raise the general effectiveness of software applications and keep their usability
through the automated recognition and removal of recurring and inefficient code fragments. It goes
on like this with the next operations in the methodology of the paper, which are redundancy
identification, optimization, and evaluation of performance metrics, while the study itself is
initiated by code acquisition and preprocessing.

1. Code Preprocessing

Different open source repositories and benchmark programs are the main sources of raw source
code in the first step. To make the whole process more uniform, the majority of the chosen
programs are Java-based. Every code sample's syntax and the ability to compile it are rigorously
checked. Code preprocessing also means a change to a uniform intermediate representation,
removing comments and standardizing the indentation. At this stage, all code inputs are
structurally consistent and ready for automated analysis.

2. Redundancy Detection

The framework implements a two-step hybrid method to initiate redundancy detection, which is
actually a start after the whole preprocessing is completed. Direct code duplications—both Type-
1 and Type-2 clones—that differ only by variable naming or formatting are extracted by means of
the syntactic analysis first. Thereafter, the logical duplications or Type-3 refactors—code items
that have the same function but different structure and implementation—are discovered with the
help of semantic analysis. A dual-layer detection system which can find redundancies in both the
code and even the area where they are not yet fully uncovered provides exhaustive coverage. After

2721

ey, l ll‘/\[\ls
;k,)]

1l Journal nl
itional Scienco:

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

that, these code fragments are sorted/top-ranked based on how many times they are at least close
to performing data.

3. Optimization Framework

The optimization unit opts to implement multiple changes, which fall under the category of
transformations by the means of the elimination of dead code, loop transformation, and partial
redundancy elimination (PRE), with a general aim to improve the program's efficiency. The aim
of partial redundancy elimination is to bring down the number of times the same sub-expressions
are calculated along different execution paths by making each one of the redundant computations
be performed only once. After that, with the help of loop optimization methods, the number of
repetitive calculations in the loop is minimized by either moving the loop-variant code out of the
loop or simplifying the loop control expressions. Besides, the removal of dead code enhances the
program by combining it with other changes as a result of which the code can run faster, use less
memory, and be more readable.

4. Automated Refactoring and Code Generation

Optimization brings about the possibility of automatic code refactoring. The entire operation is
done through cutting off the code’s excessive parts mainlining the original program’s functionality.
The product code’s correctness is checked by the automatic verification system that runs the test
cases. The stability and reliability of the optimized software are among issues raised when the
found differences or performance anomalies during the validation are thereby rechecked.

5. Evaluation and Performance Measurement

Comparing the performance of the optimized code with baseline versions is the final step of the
methodology. Multiple measurements are taken before and after optimization, including code
complexity, maintainability index, memory usage, and execution time. After a comparative
analysis, we can determine how effective the optimization tool is. The level of improvement in
these measurements shows how effective the hybrid framework is. Additionally, this also
demonstrates the framework's ability to adapt and contribute when compared with different
benchmark programs.

4. LITERATURE SURVEY

Studies related to software optimization and the elimination of redundancy to enhance the quality,
maintainability, and execution efficiency of software have been extensively conducted in the past
decade. The recognition of code clone detection as a key operation not only for identifying
redundant code but also for exposing similar code patterns was one of the earliest
acknowledgments. Besides a comprehensive survey of various open source code clone detection
tools and benchmarks, Walker et al. (2019) also pointed out the continuous trend in the

2722

al Journal of
ritional Scloncos

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

development of detection methods and their substantial impact on software quality [1]. A
technological instrument for identifying, detecting, and analyzing clones in software was also
introduced by Tukaram & U.M.B. (2019), which facilitated the step-wise discovery of the
recurring code segments [4].

In clone detection, the main problems that were handled by authors... One of the factors that
influences the accuracy of different code clone detection tools was verified by Farmahinifarahani
et al. (2019), who presented the result of their research, indicating that the choice of the tool has a
great impact on the detection of redundant code [5]. In order to provide metrics enabling a fair
comparison of different methods, Saini et al. (2019) and Svajlenko & Roy (2016) took parallel
positions, p... These authors prepared the ground for precision studies on automation and
performed methodological assessments of clone detection frameworks, basing their evaluation on
sizable benchmark datasets [7,22]. Runwal & Waghmare (2017) in their survey of logical
similarity-based clone detection techniques had recognized the importance of semantic analysis
when they referred to the role of semantic analysis for the detection of Type-3 and Type-4 clones
as the only source of changes for these types [17].

Besides clone detection, the identification and elimination of dead code have been very popular in
the research community. Romano et al. (2020) conveyed a multi-study perspective on the issue of
dead code, pointing out its negative impacts on software efficiency and maintainability [3]. Al
Abwaini et al. (2018) demonstrated that program slicing could be an effective method of
discovering unreachable code, while Romano (2018) studied the ways for locating dead methods
in Java programs [15,12]. Wang et al. (2017) also acknowledged the role of structural analysis in
optimization to the extent that they proposed the program slicing-based methods for dead code
detection [18].

Over the years, the very nature of optimization options has shifted. Just to name a few, the relevant
research works confirmed the usefulness of loop code motion transformations (Chouksey et al.,
2019) and lazy code motion (Dasgupta & Gangwani, 2019) to not only reduce runtime overhead
but also increase the efficiency of the program.[6,9]. As part of their research into multi-layer
optimizations for end-to-end data analytics, Shaikhha et al. (2020) showed the impact of
hierarchical optimization on the performance of software across a wide range of complex
applications [2]. Gotarane & Pundkar (2015) and Fontana et al. (2015) identified code smell
removal and automated refactoring as key factors for the development of stable and efficient
software [23, 25].

Aside from optimization, several other frameworks have focused largely on quality assessment
and enhancement of software. To raise the effectiveness and the maintainability of the code,
Abdalla et al. (2017) came up with robustness inspections and backward slicing instruments,
whereas Abdallah & Alrifaee (2018) set forth a framework for evaluating program quality with
reference to the relevant language standards [10,21]. Laxmi et al. (2019) presented a comparative

2723

= ~ ~
e T FANS
=== - -
‘ o l. Ax

ional Journal of
Scloncos

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 IJFANS. All Rights Reserved 3[111g 1R 0[€GR @724 DI 5 T (€118 VI U1 T3 B U ETT TN | R A | .92

study of clone detection techniques, pointing out the importance of selecting suitable approaches
depending on the characteristics of the project [8, 12].

Presently, published literature reveals a consistent trend: While it can be measured how traditional
compiler optimizations, dead code removal, and clone detection each provide benefits, the number
of those that visually merge such methods into one automated, performance-focused code
optimization is few. Designing the proposed framework, which not only efficiently searches for
code redundancies but also applies transformation-based optimizations for the execution and
maintenance of the code, originated from this void.

5. RESULTS AND DISCUSSION

The effectiveness of the proposed hybrid framework to eliminate redundancies, to utilize the code
better, and to increase performance was tested by using several open-source repositories and
benchmark applications based on Java. The assessment results were compared with those of
previous clone detection research tools and baseline compiler optimizations.

Number of Functions Before and After Optimization

140 4 T
EER Before Optimization 135

Bl After Optimization 130

118

Number of Functions

Examples

Fig. 2. Number of Function Reduction Before and After Optimization

The graph presented illustrates the impact of code optimization on the number of functions across
25 different examples, where each example represents a specific range of lines in the source code.
The x-axis denotes the example numbers from 1 to 25, with corresponding ranges of lines such as
10-97 for Example 1, 101-203 for Example 2, and so forth. The y-axis indicates the number of

2724

=re

Enad JEANS
l’p;j‘);'l-' ' tional Journal of

Nutritional Scliencos
. P L T T

\J

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

functions, with blue bars representing the pre-optimization state and green bars depicting the post-
optimization state.

In conclusion, the steady drop in function count after optimization in all examples highlights the
effectiveness of the optimization methods used. This leads to better software performance and a
simpler code structure.

Compile Time Before and After Optimization

20.0 19.47 Compile Time Before Optimization
18.62 18.6 18.49 Compile Time After Optimization
17.65
17.5
16.26
=P 15.65
15.0 + 14.53 120 1496
13.99 13.83 . 13.78
13.26 [13.32
) 1259 12.66 12.5
I 12.36 = 12.34
5 12:5 121 11.94
2 11.33 11.4
= 10.81 10.66
E 10.25 B 10.3
v 10.0 9.64 967 9.89
E 9.14 9.2
; 8.65 8.61
= 8.23 B8.25
E 7.5 7.47 T8 7.33 B -
6.22 6.54
508 5.248
5.0 4.92
3.99
2.5
0.0 T
1 2 3 4 5 6 7 8 9 10 11 1z 13 14 15 16 17 18 19 20 21 22 23 24 25

Examples

Fig. 3. Reduction in Compile Time (Execution Time) Before and After Optimization

The bar chart named "Compile Time Before and After Optimization" shows the time that a
programmer needed to compile the code before and after the code optimization for 25 different
code snippets chosen randomly. Each sample is plotted on the x-axis and is described with the
number of lines of the code, e.g., Example 1: 10-97, Example 2: 101-203, etc.

All those examples showed that compile times were always reduced, suggesting an optimization
strategy whatever the initial compile time or number of lines. One can also infer that these
strategies present scalable and robust characteristics, allowing such optimizations to be utilized for
a greater range of dimensions and complexities of programming.

-“.

..—l ..

l .‘;f:) Inlvl noa

‘/\[\IS

ynal Journal nl
l(ill l ‘(l(‘ i
»P bo

2725

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 IJFANS. All Rights Reserved 3[111g 1R 0[€GR @724 DI 5 T (€118 VI U1 T3 B U ETT TN | R A | .92

Number of Variables Before and After Optimization

Before Optimiza tion | 57
m— After Optimiza tion = 55 L, 55
53 53 52

so0 4 50
ag
47 a7
45 a5
a3 43 -
a0 1 40 a0
38

7
36 2

35
31 32 32|

30 4
S8 29 29

26 26

Number of Variables

23 23
21 50
18 18
15 15
as

20 4

14
d 11 a2
10

2

1 2 3 a 5 6 7 1 El 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Examples

Fig. 4. Reduction in the Number of Variables Before and After Optimization

The total reduction: The dark-red bars are generally lower than or at the same level as the relevant
light-pink bars across the examples, which indicates a successful reduction of variables included
in the optimization approach.

Detailed Observations:

e Examples 1-5: The number of variables has been significantly reduced in these examples. In
particular, the number of variables in Example 1 is lowered from 26 to 23, and in Example 2,
from 8 to 5.

e Examples 6 to 10 show the same reduction of variables. The reduction in the case of Example
6 is from 31 to 28, and in Example 8 is from 50 to 47.

e Examples 11-15: The trend continues. In Example 11, the count reduces from 40 variables to
29; in Example 14, the number is reduced from 56 to 53.

o Examples 16-20: The pattern continues with major decreases; for instance, Example 18 goes
down to 12 variables from 15.

e Examples 21-25: In the end, the impact of the optimization can still be seen in this section, as
Example 21 lowered from 23 to 20 variables and Example 24 changed from 47 to 44.

The graph highlights the effectiveness of code optimization techniques in reducing the number of
variables used within different segments of the code. This reduction can lead to improved code
efficiency, better resource management, and enhanced readability. Each example's data illustrates
the visible benefits that the optimization techniques have, which lead to the software's general
performance and maintainability.

Redundancy Detection Performance

The first stage of the framework focused on the implementation of syntactic and semantic clone
detection to identify code segments that were repeated. The results indicated:

2726

tional Journal of
Nutritional Scloencos
20t e Tirtn PP Bondom s Pritinry

LIFANS

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

Type-1 and Type-2 clones (both exact and parameterized copies) detection achieved a recall of
88% and a precision of 92%.

Type-3 clones (near-miss code fragments) with 85% detection accuracy have beaten the traditional
detection methods.

Due to the filtering and ranking mechanism, the optimization was limited to only those code
segments that have a high impact on redundancy, resulting in the prevention of needless
transformations.

Execution Time Improvement

The optimized executables evidenced substantial runtime enhancements after the onset of loop
optimization, dead code removal, and partial redundancy elimination:
Table 1. Average Execution Time and Memory Utilization Improvement

Metric Baseline Compiler | Hybrid Framework | Improvement
Optimization (Proposed)

Average Execution Time | 1200 920 23% reduction

(ms)

Peak Memory Usage (MB) | 85 72 15% reduction

Such outcomes indicate the effectiveness of executing both the detection of redundancy and the
transformation-based optimization, depicting that the combined framework not only achieves the
efficient usage of memory but also reduces the overhead runtime.

Maintainability and Code Quality

As a result of removing unnecessary code and performing a structural refactoring, the system
improved not only its performance but also its maintainability. The Maintainability Index (MI)
gave performance indications for the software as it improved by an average of 18% compared to
the baseline, which means better readability and less complexity of the code. One of the main
reasons for the software's better quality was the elimination of redundant code sections, which also
contributed to the decrease of code smells and the risk of maintenance issues.

Comparative Evaluation of Current Methods

Redundancy detection was more precise and had higher recall than traditional tools when
benchmarked against earlier clone detection and optimization techniques. Processing with the
hybrid framework had a better performance than traditional optimization methods that rely solely
on the compiler. Additionally, it extended performance reduction to levels higher than typical. The
ability of the method suggested to scale was evident in the efficient and stable increments of

2727

al Journal of
ritional Scloncos

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

memory efficiency and maintainability over a large variety of program sizes.
5.1 Discussion

The results show that employing change-based optimizations alongside clone detection and static
analysis yields real benefits regarding the quality of software, memory utilization, and runtime.

Some of the most prominent disclosures include:

1. Targeted Redundancy Elimination: A substantial reduction in the runtime is made by just
energizing the high-impact clones. Hence, any waste of the runtime due to redundant
transformations is caused.

2. Combined Optimizations: Interaction of three transformations to the source code - loop motion,
dead code removal, and partial redundancy elimination still yields a substantial improvement
of the program over the time measured.

3. Benefits of Maintainability: Apart from the increment of the code's readability due to the
automated structural changes, these changes also result in a decrease in the future maintenance
requirements.

The hybrid framework is a significant and enriching new development in automated software
optimization since it outperforms the standard compiler optimizations and offers an instance of a
real-life use-case for large software systems.

6. FINDINGS

It was the authors who put the proposed hybrid framework through the test to find out how
effectively it could realize the stated objective of simplification of the code, higher performance,
and removal of redundancies. For this purpose, they ran the framework through multiple open-
source repositories and benchmark programs, all written in Java. The evaluation was performed in
comparison with the outcomes produced by existing tools for clone detection and baseline
compiler optimizations.

Redundancy Detection Performance

A primary aspect of the initial stage of the framework was the application of syntactic and semantic
clone detection methods in order to recognize the code that had been implemented. The results
revealed:

88% recall and 92% precision were observed for the detection of Type-1 and Type-2 clones (exact
and parameterised copies).

Type-3 clones, or near-miss code fragments, have surpassed conventional detection methods with
an 85% detection accuracy.

Only the most high-impact redundant code segments were identified and targeted for optimization.
As a result, the changes made were minimal because the filtering and ranking mechanism

2728

al Journal of
ritional Scloncos

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

prevented unnecessary transformations by allowing better control of the process.

7. LIMITATIONS AND RESEARCH GAPS

1.

Language Dependency: The framework, which is largely designed for Java programs, might be
less compatible with other programming languages that have different syntax and semantics and
hence require changes.

Static Analysis Focus: The framework is not designed to include the processes of dynamic
runtime optimization that allow the performance to be further increased; however, it relies
mainly on static code analysis.

Partial Optimization Scope: Although the performance improvements through loop
optimization and redundancy elimination are addressed, the authors did not include cache-aware
or multi-threading optimizations that are more complex as a result of being left out
Scalability Restrictions: Nevertheless, the clone detection and analysis can be very resource-
demanding for very large-scale programs, even if it is possible to perform them on medium-to-
large software through the testing process.

Limited Context Awareness: Although the framework highlights syntactic patterns and code
structure, it only partially considers the semantic context and the dependencies of business logic
that may cause some optimization techniques to be overlooked.

Research Gaps

1.

Integrated Hybrid Frameworks: Existing research largely addresses clone detection, dead code
removal, or compiler optimizations separately. There is a lack of comprehensive frameworks
that combine these techniques systematically.

Automated Precision Optimization: Most tools identify redundant code but do not provide
automated mechanisms to prioritize high-impact optimizations based on runtime or memory
efficiency.

Maintainability Evaluation: While performance improvements are often measured, there is
limited work evaluating the impact of automated optimizations on long-term maintainability
and code readability.

Cross-Language Applicability: Current studies are largely language-specific, and frameworks
capable of multi-language optimization are still underdeveloped.

Scalability for Large Software Systems: There is a gap in research demonstrating frameworks
that scale efficiently for very large and complex software projects without significant
computational overhead.

CONCLUSION

This study presents a hybrid framework for automated code optimization and redundancy
elimination aimed at improving software performance, maintainability, and code quality. By

integrating clone detection, dead code removal, and transformation-based optimizations such as

partial redundancy elimination and loop optimization, the proposed framework effectively
identifies and optimizes redundant or inefficient code segments.

Evaluation on benchmark programs and open-source repositories demonstrated significant

improvements in execution time (~23% reduction), memory usage (~15% reduction), and

2729

al Journal of
ritional Scloncos

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

maintainability index (~18% increase) compared to baseline compiler optimizations. The findings
indicate that the combined approach delivers not just a manageable but also a scalable solution for
software optimization, since it is able to achieve runtime efficiency, maintain structural integrity,
and even simplify code.

The paper points out the importance of combining such techniques as static analysis, clone
detection, and code transformation into one automated system over the traditional methods that
focus only on discrete optimization, as a way to overcome their limitations.

Future work

Future improvements that go beyond simply extending cross-language support to include
compatibility across diverse programming environments and integrating dynamic analysis
techniques would greatly contribute to the framework's general capacity and application. The latter
would allow for runtime profiling and energy-efficient optimizations. The team should also
consider implementing advanced optimization strategies as energy-aware code transformations,
cache-conscious designs, and parallelization to give system performance and resource efficiency
a further raise. Furthermore, semantic incorporation, such as the association of business logic and
program semantics, could provide the system with contextual intelligence, while testing at an
industrial scale on complex software systems would ensure scalability and computational
robustness. Lastly, the creation of user-friendly tools that facilitate code optimization and thus
make it easier for practical software development and for a wider usage would be the final step.

Future research may not only discover these gaps in the area of automated software maintenance
and effectiveness but also build the existing structure for a more comprehensive, flexible, and
superior-quality code optimization application, thus making it possible to develop such an
application.

References

1. Andrew Walker, Tom Cerny, and Eungee Song, “Open-Source Tools and Benchmarks for
Code-CloneDetection: Past, Present, and Future,” Applied Computing Review, VOL. 19, NO. 4
Dec. 2019. Solid State Technology Volume: 63 Issue: 6 Publication Year:2020 13796 Archives
Available @ www.solidstatetechnology.us

2. Amir Shaikhha, Maximilian Schleich, Alexandru Ghita and Dan Olteanu, “Multi-layer
Optimizations for End-to-End Data Analytics,” CGO 2020: Proceedings of the 18th ACM/IEEE

International Symposium on Code Generation and Optimization Pages 145157, February 2020,
Doi: 10.1145/3368826.3377923.

3. S. Romano, C. Vendome, G. Scanniello and D. Poshyvanyk, “A Multi-Study Investigation into
Dead Code,” IEEE Transactions on Software Engineering,vol. 46, no. 1, pp. 71-99, 1 Jan. 2020.

2730

al Journal of
ritional Scloncos

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

Doi: 10.1109/TSE.2018.2842781.

4. D. Tukaram and U. M. B, “Design and Development of Software Tool for Code Clone Search,
Detection, and Analysis,” 3rd International conference on Electronics, Communication and
Aerospace Technology (ICECA), Coimbatore, India, pp. 1002-1006, 2019 Doi:
10.1109/ICECA.2019.8821928.

5. F. Farmabhinifarahani, V. Saini, D. Yang, H. Sajnani and C. V. Lopes, “On Precision of Code
Clone Detection Tools,” IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Hangzhou, China, pp- 84-94, 2019, Doi:
10.1109/SANER.2019.8668015.

6. Partial Redundancy Elimination using Lazy Code Motion by Sandeep Dasgupta, Tanmay
Gangwani (2019).

7. V. Saini et al., “Towards Automating Precision Studies of Clone Detectors,” IEEE/ACM 41st
International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 2019, pp. 49-
59, Doi: 10.1109/ICSE.2019.00023.

8. Laxmi, N. Duhan and H. Jameel, “A Comparative Study of Clone Detection Approaches,” 2019
6th International Conference on Computing for Sustainable Global Development (INDIACom),
New Delhi, India, pp. 1025-1027, 2019.

9. R. Chouksey, C. Karfa and P. Bhaduri, “Translation Validation of Code Motion
Transformations Involving Loops,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 7, pp. 1378-1382, July 2019, Doi:
10.1109/TCAD.2018.2846654.

10. M. Abdallah and M. Alrifaee, “Towards a new framework of program quality measurement
based on programming language standards,” vol. 7, p. 3, 2018, Doi: 2018-03-08 2018.

11. B. Alokush, M. Abdallah, M. Alrifaee, and M. Salah, “A Proposed Java Static Slicing
Approach,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 11, pp. 308-
317,2018.

12. Al Abwaini, Nour & Aldaaje, Amal & Jaber, Tamara & Abdallah, Mohammad & Tamimi,
Abdelfatah, “Using Program Slicing to Detect the Dead Code,” Pp.230-233, 2018, Doi:
10.1109/CSIT.2018.8486334.

13. Moustafa Ebada, Ahmed Elkelesh, Sebastian Cammerer, and Stephan ten, “Scattered EXIT
Charts for Finite Length LDPC Code Design,” Brink Institute of Telecommunications,
Pfaffenwaldring 47, University of Stuttgart, 70569 Stuttgart, Germany (2018).

14. N. Boonthep, K. Chamnongthai, and P. Phensadsaeng, “A FPGA-Based SIFT Architecture for

2731

=,
=2 I /\ [\] 5
k3 J"‘ -
F Intery I(b ll(ll l) s n nl)l
l }V) lnnll And N stritional
© TWrs bt o At~ e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 1IJFANS. All Rights Reserved 3fi11y 10 0(€/OR 67N 24 O 013 (=X W(€ L IToR VI 1 T W EXTV IR] |)

Motion Estimation in Video Coding,” Global Wireless Summit (GWS), Chiang Rai, Thailand, pp.
383-388, 2018, Doi: 10.1109/GWS.2018.8686403. Solid State Technology Volume: 63 Issue: 6
Publication Year:2020 13797 Archives Available (@ www.solidstatetechnology.us

15. S. Romano, “Dead Code,” IEEE International Conference on Software Maintenance and
Evolution (ICSME), Madrid, pp. 737-742, 2018, Doi: 10.1109/ICSME.2018.00092.

16. S. Romano and G. Scanniello, “Exploring the Use of Rapid Type Analysis for Detecting the
Dead Method Smell in Java Code,” 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Prague, pp. 167-174, 2018, Doi: 10.1109/SEAA.2018.00035.

17. Runwal, Ashish N. and Akash D. Waghmare, “Code Clone Detection based on Logical
Similarity: A Review,” International Journal of Scientific Research in Science, Engineering and
Technology 3 (2017), pp.148-151.

18. X. Wang, Y. Zhang, L. Zhao, and X. Chen, “Dead Code Detection Method Based on Program
Slicing,” International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), Nanjing, pp. 155-158, 2017, Doi: 10.1109/CyberC.2017.69.

19. A. Ngah, M. Munro and M. Abdallah, “An Overview of Regression Testing,” Journal of
Telecommunication, Electronic and Computer Engineering (JTEC), vol. 9, pp. 45-49, 2017.

20. A. Abdalla, M. Abdallah, and M. Salah, “A Brief PROGRAM ROBUSTNESS SURVEY,”
International Journal of Software Engineering & Applications, vol. 8, pp. 1-10, 2017.

21. M. Abdallah, B. Alokush, M. Alrefaee, M. Salah, R. Bader, and K. Awad, “JavaBST: Java
backward slicing tool,” 8th International Conference on Information Technology (ICIT), pp. 614-
618, 2017.

22.J. Svajlenko and C. K. Roy, “Bigcloneeval: A clone detection tool evaluation framework with
bigclonebench,” IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 596-600, Oct 2016.

23. M. Abdallah and H. Tamimi, “Clauser: Clause Slicing Tool for C Programs,” International
Journal of Software Engineering and Its Applications, vol. 10, pp. 49-56, 03/31 2016.

24. Gotarane, Prajakta and Sumedh Pundkar, “Smart Coding using New Code Optimization
Techniques in Java to Reduce Runtime Overhead of Java Compiler,” International Journal of
Computer Applications 125 pp.11-16, 2015.

25. F. A. Fontana, M. Mangiacavalli, D. Pochiero, and M. Zanoni, “On experimenting with
refactoring tools to remove code smells,” The Scientific Workshop Proceedings of the XP2015,
Helsinki, Finland, 2015.

2732

=,
.' I A [\] ’
> J“
F I l I(b ll(ll l)‘ n nl)l
l }V) Food A a N stritional
© TWrs bt o At~ e

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research Paper © 2012 IJFANS. All Rights Reserved 3[111g 1R 0[€GR @724 DI 5 T (€118 VI U1 T3 B U ETT TN | R A | .92

26. X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei, “Predicting Consistency
Maintenance Requirement of Code Clones at Copy-and-Paste Time,” IEEE Transactions on
Software Engineering, vol. 40, no. 8, pp. 773-794, 2014.

27. M. Alpuente, D. Ballis, F. Frechina, and D. Romero, “Using conditional trace slicing for
improving Maude programs,” Science of Computer Programming, vol. 80, pp. 385-415, 2014,
Doi: 2014/02/01.orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

2733

I ll‘/\l\l%
Dk,)

: mational luunnul nl

