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ABSTRACT: Adders are a crucial component of microprocessors' data channel logic, therefore their 

design has been at the forefront of VLSI research for quite some time. While EDA flow helps designers get 

closer to an optimal adder architecture, it isn't always enough. The design space is huge, which is why this is 

the case. A machine learning-based strategy was offered in earlier studies as a means to investigate the 

design space. Weak feature representations and an inefficient two-stage learning loop cause prefix adder 

structures to underperform. A multi-branch framework that combines a variational graph autoencoder and a 

neural process (NP) is first demonstrated; this is the graph neural process.  

Index Terms—Design space exploration, graph neural process, high speed adder, neural process

. 

1. INTRODUCTION 

The design industry has moved away from hand-

crafted designs and toward computer-aided 

designs (CAD) throughout the course of the 

previous half century, all while increasing the 

stringency of design standards for VERY large-

scale integration (VLSI). This transition away 

from hand-crafted designs has been accompanied 

by an increase in the number of design standards. 

The complexity of the design process, on the other 

hand, has significantly increased as a consequence 

of the lightning-fast and shockingly rapid scaling 

down of the various nodes that comprise 

semiconductor technology. The ever-increasing 

size of the design space for microprocessors, 

along with the time-consuming nature of synthesis 

cycles, led to the creation of a novel method that 

is known as efficient design space exploration, or 

DSE for short. This method is intended to reduce 

the amount of time spent exploring the design 

space. 

Even if other goals are supplied as limits, Ultimate 

DSE will only optimize for one goal at a time so 

that it can achieve that goal. VLSI design, on the 

other hand, requires the examination of trade-offs 

covering a wide variety of Quality-of-Result 

(QoR) variables, including performance, power, 

and area, amongst others. In this scenario, 

dynamic programming with multiple objectives is 

used to produce optimal solutions that strike a 

balance that satisfies the requirements of a variety 

of various goals. It is difficult to tell which of 

these Pareto optimal locations is superior to the 

others in terms of all of the goals that need to be 

achieved in the absence of additional knowledge 

about those goals. It is challenging, but not 

impossible, to identify a group of Pareto-optimal 

locations that are not only cost effective but also 

conveniently located. There are times when the 

objective functions are unknown, and the only 

way to find out what they are is to perform an 

evaluation point-by-point, which requires a large 

amount of time and effort. In these cases, the only 

way to find out what the goal functions are is to 

conduct an evaluation. In the present EDA design 

cycle, each call has the potential to return one 

implementation, but even if it does, there is no 

guarantee that the implementation will be a 

member of a Pareto set. Moreover, even if it does 

return one implementation, there is no guarantee 

that it will be a member of a Pareto set. The 

procedure of establishing the set that is optimal 

according to the Pareto principle takes a 

considerable amount of time because it requires 

the performance of multiple evaluations. In 

conclusion, multi-objective dynamic 

programming seeks to find a set of locations that 

are Pareto-optimal while reducing the amount of 
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time and effort that is spent analyzing the multiple 

goals. 

This article focuses mostly on the DSE 

approaches for adder design as its topic of 

discussion. When very large-scale integration is 

carried out, the design of carry-propagation units, 

which is at the core of the adder design, poses one 

of the primary challenges that needs to be 

addressed. Even though the unit can be 

constructed by leveraging enormous parallel 

prefix structures, there is still a need for actual 

synthesis and physical design operations. The fact 

that such implementations are feasible does not 

change the fact that this is the case. Recent 

research has suggested regular adder architectures 

that can construct a single prefix adder network by 

applying a specific set of restrictions; however, at 

this time, these designs are only able to handle a 

very small subset of the potential topologies. An 

active learning-based optimization model was 

used to examine Pareto-optimal adder designs by 

integrating two pruning approaches into the prior, 

and Ma et al. produced a state-of-the-art solution 

for generating the prefix graph structures. This 

was accomplished by combining the two pruning 

approaches into the prior. The addition of two 

different methods of pruning into the earlier 

iteration makes it possible to achieve both of these 

goals. 

 
Fig.1. High-speed adder DSE 

 

2. BACKGROUND WORK 

Graph Structured Data  

G = (a, V, E) defines a graph, where an is a global 

attribute1, V is the set of nodes where V = 

vii=1:Nv with vi being the node's attribute, and E 

is the set of edges where E = ek, vk, ukk=1:Ne 

where ek is the attribute on the edge, vk is the 

attribute on the nodes that are connected by the 

edge, and uk is the set of nodes. The methods 

shown here are not limited to undirected graphs; 

in fact, they can be used with many different types 

of graphs. 

Conditional Neural Processes 

Conditional Neural Processes (CNPs) are a subset 

of the more well-known Gaussian Process. A CNP 

takes in an IRdx at the xi input and outputs 

another at the yi output. By placing restrictions on 

any given set of context points XC:= (xi)iC and 

their associated outcomes YC, we are able to 

design a family of conditional distributions that 

may be realized. The conditional distribution can 

therefore be used to characterize an unlimited 

number of objectives XT:= (xi)iT and their 

associated outcomes YT. The model does not care 

what sequence the context clues and the targets 

are given in. Because of this invariance, random 

samples of edges can be used in learning and 

imputation. We shall use C T as an example, 

although the model is defined for any combination 

of these two parameters. 

To do this, we use the commutative operation 2, 

which translates elements in some IRd to a single 

element in the same space, to add up the data 

about the context points. This is known as the rC 

context vector in the academic world. The 

detected context points have their data condensed 

into rC. The CNP is now formally learning this 

conditional distribution. 

 
In order to put this into action, we must first 

provide the context points to a DNN h, which will 

then build an embedding ri of each context point, 
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of a length we specify. At each context point, 

multiply the representation vector by the constant 

to get rC. Based on the assumption of rC, we may 

calculate the distribution zi of the desired target 

outputs yi by decoding the target points XT. 

 
Edge Imputation  

In many settings, like traffic forecasting or social 

networks, its existence is acknowledged but its 

value is uncertain. In conventional edge 

imputation, a value estimate for the edge is 

created as a point estimate. Mean filling, 

regression, and classification are all viable options 

for this [11]. Traditional approaches, especially 

mean filling, may obscure vital aspects of the edge 

values, such as variance. To see how this works in 

practice, consider the following statement: "Bias 

in variances and covariances can be greatly 

reduced by using a conditional distribution and 

replacing missing values with draws from this 

distribution." This, together with the neural 

structure of the conditional estimation, lends 

credence to the idea that Graph Neural Processes 

are useful in imputation because they preserve 

essential features of edge values. 

Bayesian Deep Learning 

A Bayesian neural network is trained by providing 

it with a series of inputs (X = x1, • • •, xn) and 

expecting it to produce a sequence of outputs (Y = 

f(x)). The correlation between x and y is 

commonly explained using a fixed neural network 

since it seems reasonable. There is a lot written 

about this, and as a result, two distinct schools of 

Bayesian Deep Learning have developed. There 

are many more options available than just these 

two. To begin, a neural network's hidden layer 

weights W are estimated using a probability 

distribution. It can be thought of as simulating a 

random variable with a known prior distribution 

over the weights. Here we keep track of how 

much of an unknown the neuronal shift is from the 

outset. The output of the neural network can be 

regarded of as a random variable because the 

weight values W are not fixed. The neural 

network and loss function are used to learn a 

generative model. Integrating with regard to the 

posterior distribution of W yields predictions from 

such networks. 

 
There are many proposed solutions in the 

academic literature, despite the fact that this 

integral is notoriously difficult to compute in 

practice. The output of a Bayesian neural network 

encodes a distribution across all possible 

outcomes for a given set of inputs. This 

immensely useful aspect of Bayesian deep 

learning can be captured with the use of GNPs. 

The output of a Graph Neural Process can be 

represented as a random variable, whose 

conditional distribution can be taught. Unlike the 

first type of Bayesian neural networks, the 

weights W in this research did not come from a 

random distribution. 

 

3. ADDER FEATURE EXTRACTION 

AND REGRESSION 

 

Characteristics employed by conventional 

machine learning methods are, for the most part, 

created by hand with the assistance of domain 

experts. Previous research on machine learning-

based adder DSE, which does things like employ 

hand-engineered features and splits the feature 

extractor and the resulting learning model, follows 

this line of reasoning. Separating them increases 

the likelihood that the whole system will have to 

settle for less-than-ideal results. 

To avoid needing domain expertise or laborious 

feature extraction, deep learning algorithms aim to 

employ a general-purpose learning technique to 

automatically discover high-level features from 

data. The end-to-end learning system has also 

achieved recent progress in a number of EDA-
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related domains. Using the automatic feature 

extractor modified for prefix adder networks and 

the regressor, we construct a full-stack, deep 

learning-based model called GNP. 

This section reveals the anticipated GNP's 

elaborate tree structure. The suggested 

multibranch flow is illustrated in Figure 2; it is 

supported by a spine (the encoder of the graph 

autoencoder) and operates concurrently on two 

branches (the decoder of the graph autoencoder 

and the NP, which stands in for the typical 

Gaussian process). An input prefix adder's latent 

representation is obtained by using a graph 

autoencoder (GAE) on the underlying data and the 

input stream. The regression values and associated 

uncertainty for stream II are generated by an NP 

that employs an encoder-decoder design. 

 
Fig. 2. Diagram of the proposed graph neural 

process 

Algorithm 1 Graph Neural Processes 

 

4. RESULTS 
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Figure 3: The biggest eigen value encodes enough 

GNP information in m experiments. 

 

That is to say, for a broad span of m values, the 

findings are inconclusive. Let's start with the fact 

that the GNP has the highest F1-score on 14 of the 

16 datasets and the highest recall on 14 of the 16 

datasets (recall is identical with classification 

accuracy in this context). By learning an abstract 

representation of the data and a conditional 

distribution across edge values, the Graph Neural 

Process achieves superior performance than both 

naïve and strong baselines in edge imputation. 

This may be done with datasets containing 

anywhere from a few hundred to more than nine 

thousand graphs using the GNP. We also remark 

that the GNP can ultimately win out over class 

distinctions. 

 

Table 1: Features of the explored data sets 

AIDS 

The AIDS Antiviral Screen dataset compiles the 

findings obtained from tests conducted on 

thousands of different compounds to assess 

whether or not these compounds exhibit anti-HIV 

activity. Through the use of the screen's results, 

the data relevant to these substances is presented 

in the form of a chemical graph. On a dataset of 

equivalent size, the GNP displays performance 

that is 7% better than that of the RF. This 

advantage can be attributed to the fact that the 

GNP has more features.  

bzr,cox2,dhfr,er.  

An investigation into the pharmacophore kernel 

was carried out with the assistance of the chemical 

compound databases BZR, COX2, DHFR, and 

ER. The 3D coordinates of the compounds are 

included in each and every one of these datasets. 

On these datasets, different algorithms produce 

variable outcomes; these are the datasets that, on 

average, have orders of magnitude more edges 

than the other datasets. These are the datasets that 

have been subjected to the various methods. These 

datasets have a considerable class imbalance; if 

you guess the edge label that occurs most 

frequently, you will have an accuracy of 

approximately 90%. For example, the bzr dataset 

contains 61,594 entries in class 1, yet there are 

only 7,273 records in total throughout the next 

four classes combined. In spite of this, the GNP 

has the best F1 and recall on two out of the four of 

these, whereas random forest has the highest 

precision on three out of the four of these. across 

addition to the fact that there is an overwhelming 

amount of data to deal with, it is probable that the 

difficulty can be attributable to the fact that the 

classes are not dispersed evenly across the world. 

Mutagenicity, MUTAG.  

There are 188 unique chemical compounds that 

make up the MUTAG dataset. Each of these 

chemicals has been classified into one of two 

groups depending on the mutagenic effect it has 
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on a bacterial population. Despite the fact that the 

mutagenicity dataset includes a collection of 

chemicals and information regarding their 

interactions with in vitro, the dataset has been 

criticized for its lack of transparency. Although 

both GNP and RF are much more accurate than 

naive baselines, the results of this particular test 

show that GNP performs somewhat better than 

random forest by a few percentage points. 

PTC_*.  

The several datasets for the Predictive Toxicology 

Challenge each contain several hundred organic 

compounds that have been categorized according 

to the degree to which they induce cancer in male 

and female mice and rats. The goal of this 

challenge is to develop a method that can 

accurately predict the likelihood that a substance 

will cause cancer in animals. On the PTC family 

of graphs, the performance of GNP is superior to 

that of random forests by a margin of 10–15% in 

terms of precision and by 3–10% in terms of F1-

score; nonetheless, both methods perform better 

than using naive baselines. 

Tox21_*.  

The human nuclear receptor signaling and stress 

pathway was probed with a total of 10,000 unique 

chemical compounds, and the data presented here 

is the result of those investigations. The principal 

goals of the project were to improve human health 

in general and conduct research on the 

relationships between structure and activity. On 

the Tox family of graphs, the GNP displays much 

greater performance in comparison to every other 

model by approximately 20% in precision, 

approximately 12% in F1, and approximately 10% 

in recall. 

 
Figure 4: Our method is 0.2 better. GNPs' edge 

imputation works across metrics and datasets. 

 
Figure 5: Experimental recall graph compared 

with baselines 

 
Figure 6: Experimental F1-score graph compared 

with baselines 

 

5. CONCLUSION 
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As a novel end-to-end learning model, the graph 

neural process provides both a GAE and an NP for 

prefix adder architectures. Automatic feature 

extraction from prefix adder structures is made 

possible by GNP. Furthermore, we based our DSE 

methodology for low-power, high-throughput 

prefix adders on a sequential optimization model 

informed by the GNP. Automatic feature 

extraction and exploration of the adder space at a 

high grade. The experiments verified the new 

approach's superiority. We theorized that as VLSI 

designs evolved, we would be able to modify our 

theory to deal with a wider variety of DSE issues 

(including, but not limited to, the multiplier DSE 

problem and adder DSE worries across bit width 

and technology nodes). 
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