Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Classification and Properties of Atomic Classes in Lattices

T. Nageswara Rao^{1, a)},

¹⁾ Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India.

tnraothota@kluniversity.in ,

D.V.S.R. Anil Kumar^{2,b)},

²⁾ TKR Institute of Engineering and Technology, Hyderabad, Telangana, India.

dvsranilkumar@gmail.com

Jonnalagadda VenkateswaraRao^{3,c)}

³⁾ Department of Mathematics, School of Science & Technology, United States International University, USIU-Africa, P.O. Box 14634 - 00800 Nairobi, Kenya.

jvrao@usiu.ac.ke

ABSTRACT

In this manuscript, we introduce a set of null sets, along with definitions for lattice measures of atoms and lattice semi-finite measures. Our key finding establishes that the lattice measure of any two atoms is either disjoint or identical. Additionally, we provide a proof demonstrating that the class encompassing all atoms within a lattice sigma algebra is countable. Ultimately, we affirm certain fundamental characteristics pertaining to atoms in a lattice sigma algebra.

Key words: Lattice, $\Box \Box \Box \Box$ algebra, atom, measure

1. INTRODUCTION

In section 2, Tanaka[6] provides the definition of a lattice sigma algebra, while Anil Kumar et al.[1] expounds on the definitions of lattice measurable space, lattice measurable set, lattice measure space, and lattice σ -finite measure. This section also includes the proof of certain fundamental properties associated with lattice measurable sets.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

In the third section, we introduce a set of null sets, atoms, along with the definitions of lattice measures for atoms and lattice semi-finite measures. Within this context, we establish a significant result: the lattice measures of any two atoms are either disjoint or identical. Furthermore, we demonstrate that the class encompassing all atoms in a lattice sigma algebra is countable. Additionally, we present a theorem asserting that if a lattice sigma algebra is atom less, it must contain a countable number of disjoint non-empty lattice measurable sets. Lastly, we affirm certain elementary characteristics pertaining to atoms within a lattice sigma algebra.

2. Preparatory Measures:

In this section, we will provide a concise overview of established principles in lattice theory, drawing on well-known sources such as Birkhoff [2]. A structure (L, \land, \lor) is designated as a lattice if it encompasses operations \land and \lor and adheres to the following conditions for any elements x, y, z within L:

(L1) Commutative law: $x \land y = y \land x$ and $x \lor y = y \lor x$.

(L2) Associative law: $x \land \Box (y \land z) = (x \land y) \land z$ and $x \lor \Box (y \lor z) = (x \lor y) \lor z$.

(L3) Absorption law: $x \lor \Box (y \land x) = x$ and $x \land \Box (y \lor x) = x$.

Hereafter, the lattice (L, $\land \Box \Box \lor$) will often be written as L for simplicity. A lattice (L, $\land \Box \Box \lor$) is called distributive if, for any x, y, z, in L.

(L4) Distributive law holds: $x \lor (y \land z) = (x \lor y) \land \Box (x \lor z)$ and $x \land \Box (y \lor z) = (x \land y) \lor \Box (x \land z)$.

A lattice L earns the designation of being complete if, for every subset A of L, it encompasses both the supremum \lor A and the infimum \land A. In the case of a complete lattice, it inherently includes maximum and minimum elements, conventionally denoted as 1 and 0 or I and O, respectively [3].

A distributive lattice takes on the title of a Boolean lattice when, for any element x in L, there exists a singular and unique complement xc, satisfying the condition:

 $x \lor xc = 1$ (L5) the law of excluded middle

 $x \wedge xc = 0$ (L6) the law of non-contradiction

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Let L be a lattice and $\in L \to L$ be an operator. Then \in is called a lattice complement in L if the following conditions are satisfied.

(L5) and (L6);	$\forall x \in L, x \lor x^{c} = 1 \text{ and } x \land x^{c} = 0,$
(L7) The law of contrapositive;	$\forall x, y \in L, x \leq y \text{ implies } x^{c} \geq y^{c},$
(L8) The law of double negation;	$\forall x \in L, (x^c)^c = x.$

In this document, we regard lattices as complete lattices that adhere to (L1) - (L8) with the exception of (L6), the law of non-contradiction.

Definition 2.1:

Unless specified otherwise, let X denote the entire set, and L be a lattice comprising subsets of X. A lattice L is referred to as a σ -Algebra if it satisfies the following conditions:

- (1) $\forall h \in L, h^{c} \in L$
- (2) if $h_n \in L$ for n = 1, 2, 3, then $\bigvee_{n=1}^{\infty} h_n \in L$.

We denote $\Box(L) = \beta$, as the lattice \Box -Algebra generated by L.

Example2.1. Let $X = \Re$, $L = \{\text{measurable subsets of } \Re \}$ with usual ordering (\leq). Here L is a lattice, $\Box(L) = \beta$ is a lattice \Box - algebra generated by L.

Example2.2[3]. 1. $\{\Box \Box \Box X\}$ is a lattice \Box -Algebra.

2. P(X) power set of X is a lattice \Box -Algebra.

Definition 2.2:

The ordered pair (X,B) is termed a lattice measurable space, where X is a set and B is a lattice, satisfying certain conditions that render it suitable for measurable space considerations.

Example2.3. $X = \Re$, $\Box L = \{All Lebesgue measurable sub sets of <math>\Re \}$

 $(\mathfrak{R}, \mathfrak{G})$ is a lattice measurable space.

Definitition2.3. If μ : $\beta \Box \Box R \cup \{\Box\}$ satisfies the following properties, then m is called a lattice measure on the lattice \Box -Algebra \Box (L).

(1)
$$\mu(\Box) = \mu(0) = 0.$$

(2) $\forall h, g \in \Box \beta$, such that $\mu(h), \mu(g) \ge 0; h \le g \Box \Box \mu(h) \le \mu(g)$.

 $(3) \quad \forall \ h, \, g \in \square \ \beta : \mu(h \lor g) + \mu(h \land g) = \mu(h) + \mu(g).$

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

(4) If $h_n \square \square \beta$, $n \in N$ such that $h_1 \le h_2 \le ... \le h_n \le ...$, then $\mu(\square \bigvee_{n=1}^{\infty} \square h_n) = \lim \mu(h_n)$.

Let μ_1 and μ_2 be lattice measures defines on the same lattice \Box -Algebra β . If one of them is finite, the set function $\mu(E) = \mu_1(E) - \mu_2(E)$, $E \in \Box \beta$ is well defined and countably additive on β .

Example2.4[4]. Let X be any set. $\beta = P(X)$ be the class of all sub sets of X. Define for any A $\in \beta, \mu(A) = +\infty$ if A is infinite

= |A| if A is finite. Where |A| is the number of elements in A. Then μ is a countable additive set function defined on β and hence μ is a lattice measure on β .

Definition 2.4: A set A is considered a lattice measurable set, or simply lattice measurable, if A belongs to the lattice B.

Example2.5. The interval (a, ∞) is a lattice measurable under usual ordering.

Example2.6. $[0, 1] < \Re$ is lattice measurable under usual ordering.

Definition 2.5: The lattice measurable space (*X*,B), combined with a lattice measure μ , is termed a lattice measure space, denoted by (*X*,B, μ).

Example2.7. \Re is a set of real numbers, μ is the lattice Lebesgue measure on \Re and β is the family of all Lebesgue measurable subsets of real numbers. Then (\Re, β, μ) is a lattice measure space.

Example2.8. \Re be the set of real numbers and β is the class of all Borel lattices, μ be a lattice Lebesgue measure on \Re then (\Re, β, μ) is a lattice measure space.

Definition 2.6: In the lattice measure space (X,B,μ) , if the set X is finite, then the measure μ is referred to as a lattice finite measure.

Example2.9. The lattice Lebesgue measure on [0, 1] is a lattice finite measure.

Definition 2.7: If μ is a lattice finite measure, then the lattice measure space (X, B, μ) is termed a lattice finite measure space.

Example2.10. Let β be the class of all Lebesgue measurable sets of [0, 1] and μ be a lattice Lebesgue measure on [0, 1] then ([0, 1], $\beta \Box \Box \mu$) is a lattice finite measure space.

Definition2.8. Let $(X, \beta \Box \Box \mu)$ be a lattice measure space if there exists a sequence of lattices measurable sets $\{x_n\}$ such that

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

(i)
$$X = \bigvee_{n=1}^{\infty} x_n$$
 (ii) $\mu(x_n)$ is finite.

then μ is called a lattice σ – finite measure.

Research paper

Example2.11. The lattice Lebesgue measure on (\mathfrak{R}, μ) is a lattice σ – finite measure since $\mathfrak{R} = \bigvee_{n=1}^{\infty} (-n, n)$ and $\mu((-n, n)) = 2n$ is finite for every n.

Definition 2.9: If μ is a lattice σ -finite measure, then the lattice measure space ((*X*,B, μ) is termed a lattice σ -finite measure space.

Example2.12. Let β be the class of all Lebesgue measurable sets on $\Re = \bigvee_{n=1}^{\infty} (-n, n)$ and μ be a lattice Lebesgue measure on \Re then $(\Re, \beta \Box \Box \mu)$ is a lattice σ – finite measure space **Theorem 2.1**: Let $\{E_i\}$ be an infinite decreasing sequence of lattice measurable sets; that is, a sequence with $E_{i+1} < E_i$ for each $i \in N$. Let $\mu(E_i) < \infty$ for at least one $i \in N$. Then

$$\mu\!\!\left(\bigwedge_{i=1}^{\infty} \! E_i\right) = \lim_{n \to \infty} \mu\!\left(E_n\right)$$

Proof: Let p be the least integer such that $\mu(E_p) < \infty$. Then $\mu(E_i) < \infty$, for all $I \ge p$.

Let
$$E = \bigwedge_{i=1}^{\infty} E_i$$
 and $F_i = E_i - E_{i+1}$.

Then the sets F_i's are lattice measurable and pair wise disjoint, clearly

$$E_p - E = \bigvee_{i=p}^{\infty} F_i \text{ . Therefore,} \qquad \mu(Ep - E) = \sum_{i=p}^{\infty} \mu(F_i) = \sum_{i=p}^{\infty} \mu(E_i - E_{i+1})$$

But $\mu(Ep) = \mu(E) + \mu(E_p - E)$ and $\mu(E_i) = \mu(E_{i+1}) + \mu(E_i - E_{i+1})$

For all $i \ge p$ since $E < E_p$ and $E_{i+1} < E_i$, further, using the fact that $\mu(E_i) < \infty$, for all $i \ge p$, if follow that $\mu(Ep - E) = \mu(Ep) - \mu(E)$ and $\mu(E_i - E_{i+1}) = \mu(E_i) - \mu(E_{i+1})$ for all $i \ge p$.

Hence
$$\mu(Ep) - \mu(E) = \sum_{i=p}^{\infty} \mu(E_i) - \mu(E_{i+1}) = \lim_{n \to \infty} \sum_{i=p}^{n} (\mu(E_i) - \mu(E_{i+1})) = \lim_{n \to \infty} (\mu(E_p) - \mu(E_n))$$

=
$$\mu(E_p)$$
- $\lim_{n\to\infty} \mu(E_n)$. Since $\mu(E_p) < \infty$, it gives $\mu(E) = \lim_{n\to\infty} \mu(E_n)$.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Theorem 2.2: Let $\{E_i\}$ be an infinite increasing sequence of lattice measurable sets; that is, a sequence with $E_{i+1} > E_i$ for each $i \in N$. Let $\mu(E_i) < \infty$ for at least one $i \in N$. Then

$$\mu\left(\bigvee_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} \mu(E_n).$$

Proof: If $\mu(E_p) = \infty$ for some $p \in N$, then the result is trivially true, since $\mu\left(\bigvee_{i=1}^{\infty} E_i\right) \ge \mu\left(E_p\right) = \infty$

For each $n \ge P$. Let $\mu(E_i) < \infty$. For each $i \in N$. Now $E = \bigvee_{i=1}^{\infty} E_i$, evidently $F_i = E_i - E_{i+1}$. Then the sets F_i 's are lattice measurable and pair wise disjoint, clearly $E - E_i = \bigvee_{i=n}^{\infty} F_i$

 $\mu(E - E_{i}) = \mu(\bigvee_{i=1}^{\infty} F_{i}) = \sum_{i=1}^{\infty} \mu(F_{i}) = \sum_{i=1}^{\infty} \mu(E_{i+1} - E_{i}) = \mu(E) - \mu(E_{i}) = \sum_{i=1}^{\infty} (\mu(E_{i+1}) - \mu(E_{i}))$ $= \lim_{n \to \infty} \sum_{i=1}^{n} (\mu(E_{i+1}) - \mu(E_{i})) = \lim_{n \to \infty} (\mu(E_{i+1}) - \mu(E_{i}))$

it gives $\mu(E) = \lim_{n \to \infty} \mu(E_n)$.

§3. Describing the Class of Atoms in Lattice Sigma Algebras

Definition3.1: Let (Y, β) be a lattice measurable space. A nonempty class N of sets, where N is contained in β is called a class of null sets of β

1) If $E \in N$ and $F \in \beta$, then $E \wedge F \in N$, and

2) If $E_n \in N$, n=1, 2, 3..., then $\bigvee_{n=1}^{\infty} E_n \in N$.

Definition 3.2: Let (Y, β, μ) be a lattice measure space. A set E in β is called a μ -atom if 1) $\mu(E) > 0$ and 2) If $F \in \beta$ such that F is contained in E, then either $\mu(E-F) = 0$ or $\mu(F) = 0$.

Definition3.3: Let β be a lattice σ – algebra on a set Y. A set E in β is said to be an atom of β if

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

- 1) $E \neq \phi$ and
- 2) F in β , F is contained in E implies F = ϕ or F = E.

Example 3.1[5]: The chain of natural numbers has just one atom, the number 2.

Example 3.2: The set of natural numbers under divisible order, all primes are atoms.

Note 3.1: A lattice σ – algebra β of Y is said to be atomless if there are no atoms of β .

Definition3.4: Lattice semi-finite measure: A lattice measure μ on a lattice σ – algebra β of Y is said to be semi finite if $F \in \beta$, $\mu(F) = \infty$ implies there exists $E \in \beta$ such that E is contained in F and $0 < \mu(E) < \infty$.

Result 3.1: Let (Y, β, μ) be a lattice measure space, if E_1 and E_2 are atoms, then either $\mu(E_1 \Delta E_2) = 0$ or $\mu(E_1 \wedge E_2) = 0$ or (the lattice measure of any two atoms are either disjoint or identical)

Proof: Let E_1 and E_2 are atoms. Since E_1 is an atom by definition 3.2, $E_2 \in \beta$ such that E_2 is contained in E_1 implies $\mu(E_1-E_2) = 0$ or $\mu(E_2) = 0$. Since E_2 is an atom $\mu(E_2) \neq 0$ implies $\mu(E_1-E_2) = 0$. By similar argument we have $\mu(E_2-E_1) = 0$. Now $E_1 \Delta E_2 = (E_1-E_2) \lor (E_2-E_1)$ implies $\mu(E_1 \Delta E_2) = \mu(E_1-E_2) + \mu(E_2-E_1)$ implies $\mu(E_1 \Delta E_2) = 0$. Also evidently $(E_1 \lor E_2) = (E_1 \land E_2) \lor (E_1 \land E_2) = \mu(E_1 \land E_2) = \mu(E_1 \land E_2) + \mu(E_1 \land E_2) = \mu(E_1 \land E_2)$ implies $\mu(E_1 \lor E_2) = \mu(E_1 \land E_2) + \mu(E_1 \Delta E_2)$ implies $\mu(E_1 \lor E_2) = \mu(E_1 \land E_2) = 0$ now $E_1 \land E_2 \leq E_2$ implies $\mu(E_1 \land E_2) = 0$. Again if $\mu(E_1-E_2) \neq 0$ then $\mu(E_2) = 0$ now $E_1 \land E_2 \leq E_2$ implies $\mu(E_1 \land E_2) \leq \mu(E_2)$ implies $\mu(E_1 \land E_2) \leq 0$. But $\mu(E_1 \land E_2) \geq 0$ (by definition 2.3) therefore $\mu(E_1 \land E_2) = 0$. If E_2 - $E_1 \neq 0$ similarly we get $\mu(E_1 \land E_2) = 0$.

Result 3.2: Let (Y, β, μ) be a lattice measure space and μ is lattice σ – finite measure, then the class A of all atoms in a lattice σ -algebra β is countable.

Proof: Let E_1 , $E_2 \in A$ be any two sets by result 3.1. we have either $\mu(E_1 \Delta E_2) = 0$ or $\mu(E_1 \wedge E_2) = 0$.

If $\mu(E_1 \Delta E_2) = 0$ then the set $(E_1 \wedge E_2)$ represents an atom or if $\mu(E_1 \wedge E_2) = 0$ then (E_1-E_2) and (E_2-E_1) represents two disjoint atoms. Which implies two disjoint sets in β – N. Continuing this process for E_1 , E_2 , we get a countable collection of disjoint sets in β – N which leads β – N is countable.

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Theorem 3.1: Let μ be a lattice semi-finite measure on a lattice σ – algebra β of X. Let N denotes the collection of sets of μ - measure zero. Then β – N satisfies countable chain condition (ccc) if and only if μ is lattice σ – finite measure.

Proof: If μ is lattice σ – finite measure, it is obvious that β – N satisfies ccc.

Conversely, if $\mu(X) < \infty$, then there is nothing to prove.

Research paper

If $\mu(\mathbf{Y}) = \infty$, choose E_1 in β such that $0 < \mu(E_1) < \infty$. Choose E_2 in β such that E_2 is contained in $\mathbf{Y} - E_1$ and $0 < \mu(E_2) < \infty$. Continuing this process we get a sequence of disjoint sets E_1 , E_2 , ..., in β such that E_i in $\beta - N$ and $\mu(E_i) < \infty$. If $\mu(\mathbf{Y} - \bigvee_{i=1}^{\infty} E_i) < \infty$, then we have a decomposition of \mathbf{Y} which implies that μ is σ - finite. $\mu(\mathbf{Y} - \bigvee_{i=1}^{\infty} E_i) = \infty$, choose E_α in β such that E_α is contained in $\mathbf{Y} - \bigvee_{i=1}^{\infty} E_i$ and $0 < \mu(E_\alpha) < \infty$, where α is the first countable ordinal. Proceeding inductively, since $\beta - N$ satisfies ccc, there exists a countable ordinal β such that $\mu(\mathbf{Y} - \bigvee_{\alpha < \beta} A_\alpha) < \infty$. This implies that μ is lattice σ - finite measure.

Theorem 3.2: Let β be a lattice σ – algebra of a set Y. β is atomless if and only if every non empty set in β contains countable number of disjoint non empty sets in β .

Proof: Let E in β be non empty set. Fix $x \in E$, we can choose E_1 in E such that $x \notin E_1$.

Now E_1 is non empty and E_1 is contained in E, choose E_2 in E such that $x \notin E_2$.

Now E_2 is non empty and E_2 is contained in E-E₁, choose E_3 in E such that $x \notin E_3$, continuing this process we get a family $\{E_{\alpha} / \alpha < \beta\}$ of non empty disjoint sets contained in β where β is the first uncountable ordinal.

The converse part is trivial.

Theorem 3.3: Let β be a lattice σ – algebra of a set Y. Then is satisfies ccc if and only if β is isomorphic to the power set, that is the class of all subsets, of some countable set.

Proof: We can prove this theorem by using theorem 3.1. and theorem 3.2. If β satisfies ccc, the number of atoms of β is countable. From Y remove all atoms of β . In the view of above theorem 3.2. the remaining part is empty. Hence it is isomorphic.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Example 3.3: Take the numbers 0,1 and the fractions $\frac{m}{n}$, $0 < \frac{m}{n} < 1$ that is

 $0, 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \dots \text{ order as follows } 0 < \frac{m}{n} < 1 \text{ for all } \frac{m}{n}; \frac{m}{n} \le \frac{r}{s} \text{ only } 1 < \frac{m}{s} < \frac{m}$

if max(m, r) = r ; $\frac{m}{n}$, $\frac{r}{s}$ in comparable if $n \neq s$. clearly the fractions from 0 to 1 has a countable infinity of atoms and of dual of atoms.

REFERENCES.

- [1] D.V.S.R. Anil kumar, J. Venkateswara rao, J. Pramada, Radon Nikodym Theorem and Its Uniqueness Of Signed Lattice Measure, International Journal Of Mathematics And Computation, Volume 12, No. S11; Year 2011.
- [2] Birkhoff. G, Lattice Theory 3rd ed., AMS Colloquim Publications, Providence, RI, 1967.
- [3] Halmos. P.R., Measure Theory (Springer, New York, 1974).
- [4] Royden. H.L., Real Analysis, 3rd ed., Macmillan Publishing, New York, 1981.
- [5] Szasz Gabor, Introduction to lattice theory, academic press, New York and London 1963.
- [6] Tanaka. J, Hahn Decomposition Theorem of Signed Lattice Measure, arXiv:0906.0147Vol1 [Math.CA] 31 May 2009.