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ABSTRACT 

In this manuscript, we introduce a set of null sets, along with definitions for lattice measures 

of atoms and lattice semi-finite measures. Our key finding establishes that the lattice measure 

of any two atoms is either disjoint or identical. Additionally, we provide a proof 

demonstrating that the class encompassing all atoms within a lattice sigma algebra is 

countable. Ultimately, we affirm certain fundamental characteristics pertaining to atoms in a 

lattice sigma algebra. 
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1. INTRODUCTION 

In section 2, Tanaka[6] provides the definition of a lattice sigma algebra, while Anil Kumar 

et al.[1] expounds on the definitions of lattice measurable space, lattice measurable set, lattice 

measure space, and lattice σ–finite measure. This section also includes the proof of certain 

fundamental properties associated with lattice measurable sets.  
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In the third section, we introduce a set of null sets, atoms, along with the definitions of lattice 

measures for atoms and lattice semi-finite measures. Within this context, we establish a 

significant result: the lattice measures of any two atoms are either disjoint or identical. 

Furthermore, we demonstrate that the class encompassing all atoms in a lattice sigma algebra 

is countable. Additionally, we present a theorem asserting that if a lattice sigma algebra is 

atom less, it must contain a countable number of disjoint non-empty lattice measurable sets. 

Lastly, we affirm certain elementary characteristics pertaining to atoms within a lattice sigma 

algebra. 

 

2. Preparatory Measures: 

In this section, we will provide a concise overview of established principles in lattice theory, 

drawing on well-known sources such as Birkhoff [2]. A structure (L, , ) is designated as a 

lattice if it encompasses operations  and  and adheres to the following conditions for any 

elements x, y, z within L: 

 (L1) Commutative law: x  y = y  x and x  y = y  x. 

(L2) Associative law: x  (y  z) = (x  y)  z and x  (y  z) = (x  y)  z. 

(L3) Absorption law: x  (y  x) = x and x  (y  x) = x. 

 Hereafter, the lattice (L,  ) will often be written as L for simplicity. A lattice (L, 

 ) is called distributive if, for any x, y, z, in L.  

(L4) Distributive law holds: x  (y  z) = (x  y)  (x  z) and x  (y  z) = (x  y)  (x 

 z). 

A lattice L earns the designation of being complete if, for every subset A of L, it 

encompasses both the supremum  A and the infimum  A. In the case of a complete lattice, 

it inherently includes maximum and minimum elements, conventionally denoted as 1 and 0 or 

I and O, respectively [3].  

A distributive lattice takes on the title of a Boolean lattice when, for any element x in L, there 

exists a singular and unique complement xc, satisfying the condition:  

 x  xc = 1 (L5) the law of excluded middle 

 x  xc = 0 (L6) the law of non-contradiction 
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Let L be a lattice and €: L  L be an operator. Then € is called a lattice complement in L if 

the following conditions are satisfied. 

(L5) and (L6);       x  L, x  xc = 1 and x  xc = 0, 

(L7) The law of contrapositive;    x, y  L, x < y implies xc > yc, 

(L8) The law of double negation;    x  L, (xc)c = x. 

 In this document, we regard lattices as complete lattices that adhere to (L1) - (L8) with 

the exception of (L6), the law of non-contradiction. 

Definition 2.1: 

Unless specified otherwise, let X denote the entire set, and L be a lattice comprising subsets 

of X. A lattice L is referred to as a σ-Algebra if it satisfies the following conditions: 

 (1)  h  L, hc  L 

 (2) if hn  L for n = 1, 2, 3 ....., then  





1n
 hn  L. 

 We denote (L) = ß, as the lattice -Algebra generated by L. 

Example2.1. Let X =  , L = {measurable subsets of  } with usual ordering (≤). Here L is 

a lattice , (L) = ß is a lattice  - algebra generated by L. 

Example2.2[3]. 1. { X} is a lattice -Algebra.  

     2. P(X) power set of X is a lattice -Algebra. 

Definition 2.2:  

The ordered pair (X,B) is termed a lattice measurable space, where X is a set and B is a 

lattice, satisfying certain conditions that render it suitable for measurable space 

considerations. 

Example2.3. X = , L = {All Lebesgue measurable sub sets of  } 

( ,ß) is a lattice measurable space. 

Definitition2.3. If µ: ß  R  { } satisfies the following properties, then m is called a 

lattice measure on the lattice -Algebra (L). 

(1) µ( ) = µ(0) = 0. 

(2)  h, g   ß, such that µ(h), µ(g) > 0; h < g µ(h) < µ(g). 

(3)  h, g   ß: µ(h  g) + µ(h  g) = µ(h) + µ(g). 
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(4) If hn  ß, n  N such that h1 < h2 < ... < hn < ...., then µ(





1n
hn) = lim µ(hn). 

 Let µ1 and µ2 be lattice measures defines on the same lattice -Algebra ß. If one of 

them is finite, the set function µ(E) = µ1(E) - µ2(E), E   ß is well defined and countably 

additive on ß.  

Example2.4[4]. Let X be any set. ß = P(X) be the class of all sub sets of X. Define for any A 

 ß, µ(A) = +  if A is infinite  

         = |A| if A is finite. Where |A| is the number of elements in A. Then µ is a countable 

additive set function defined on ß and hence µ is a lattice measure on ß. 

Definition 2.4: A set A is considered a lattice measurable set, or simply lattice measurable, if 

A belongs to the lattice B. 

Example2.5. The interval (a,  ) is a lattice measurable under usual ordering. 

Example2.6. [0, 1] <   is lattice measurable under usual ordering.  

Definition 2.5: The lattice measurable space (X,B), combined with a lattice measure μ, is 

termed a lattice measure space, denoted by (X,B,μ). 

Example2.7.   is a set of real numbers, μ  is the lattice Lebesgue measure on   and ß is 

the family of all Lebesgue measurable subsets of real numbers. Then ( , ß,μ ) is a lattice 

measure space. 

Example2.8.   be the set of real numbers and ß is the class of all Borel lattices, μ  be a 

lattice Lebesgue measure on   then ( , ß,μ ) is a lattice measure space.   

 Definition 2.6: In the lattice measure space (X,B,μ), if the set X is finite, then the measure μ 

is referred to as a lattice finite measure. 

Example2.9. The lattice Lebesgue measure on [0, 1] is a lattice finite measure.  

Definition 2.7: If μ is a lattice finite measure, then the lattice measure space (X, B, μ) is 

termed a lattice finite measure space. 

Example2.10. Let ß be the class of all Lebesgue measurable sets of [0, 1] and μ  be a lattice 

Lebesgue measure on [0, 1] then ([0, 1], ß μ ) is a lattice finite measure space. 

Definition2.8. Let (X, ß μ ) be a lattice measure space if there exists a sequence of lattices 

measurable sets { nx } such that  
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(i) X = 





1n
nx                          (ii) μ ( nx ) is finite. 

then μ  is called a lattice σ – finite measure. 

Example2.11. The lattice Lebesgue measure on ( ,μ ) is a lattice σ – finite measure since 

  = 





1n
(-n, n) and μ ((-n,n)) = 2n is finite for every n.  

Definition 2.9: If μ is a lattice σ-finite measure, then the lattice measure space ((X,B,μ) is 

termed a lattice σ-finite measure space. 

Example2.12. Let ß be the class of all Lebesgue measurable sets on   = 





1n
(-n, n) and μ  be 

a lattice Lebesgue measure on   then ( , ß μ ) is a lattice σ – finite measure space 

Theorem 2.1: Let {Ei} be an infinite decreasing sequence of lattice measurable sets; that is, a 

sequence with Ei+1 < Ei for each iN. Let µ(Ei) < ∞ for at least one iN. Then 

 

 

 

Proof: Let p be the least integer such that µ(Ep) < ∞. Then µ(Ei) < ∞, for all I  p. 

Let E = i
1i
E




  and Fi = Ei – Ei+1. 

Then the sets Fi’s are lattice measurable and pair wise disjoint, clearly 

Ep – E = i
pi
F




  . Therefore,      











pi

1ii

pi

i )E-μ(E  )μ(F = E) - µ(Ep
 

E)-μ(E  μ(E) = µ(Ep)But     p
  

)E-μ(E  )μ(E = )µ(E     and 1ii1ii  
 

For all i  p since E< Ep and Ei+1 < Ei, further, using the fact that µ(Ei) < ∞, for all i ≥ p, if 

follow that µ(E)- µ(Ep) = E) - µ(Ep and )μ(E - )μ(E)E-μ(E 1ii1ii  
 
for all i ≥ p. 

Hence ))μ(E-)μ(E   µ(E)- µ(Ep) 
pi

1ii





  =     





n

pi

1ii
n

Eμ-EμLim  =     np
n

Eμ-EμLim


 

 

=    n
n

p EμLimEμ


 . Since  pEμ  < ∞, it gives    n
n

EμLim Eμ


 . 

 

 n
n

i
1i

EμLim  Eμ
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Theorem 2.2: Let {Ei} be an infinite increasing sequence of lattice measurable sets; that is, a 

sequence with Ei+1 > Ei for each iN. Let µ(Ei) < ∞ for at least one iN. Then 

 n
n

i
1i

EμLim  Eμ














 . 

Proof: If µ(Ep) = ∞ for some pN, then the result is trivially true, since   pi
1i

Eμ  Eμ 











 = 

∞ 

For each n ≥  P. Let  µ(Ei) < ∞. For each iN. Now E = i
1i
E




 , evidently Fi = Ei – Ei+1. Then 

the sets Fi’s are lattice measurable and pair wise disjoint, clearly E – Ei = i
pi
F






 

µ(E – Ei) =µ( i
1i
F




 ) = 











1i

i1i

1i

i )E-μ(E  )μ(F  =  





1i

i1ii )μ(E-)μ(E   )µ(E- µ(E) 
 

=     





n

1i

i1i
n

Eμ-EμLim  =     i1i
n

Eμ-EμLim 


 

it gives    n
n

EμLim Eμ


 . 

 

§3. Describing the Class of Atoms in Lattice Sigma Algebras 

 

Definition3.1: Let (Y, ß) be a lattice measurable space. A nonempty class N of sets, where N 

is contained in ß is called a class of null sets of ß 

1) If EN and Fß, then EF N, and  

2) If EnN, n=1, 2, 3...., then n
1n
E




 N. 

 

Definition3.2: Let (Y, ß, µ) be a lattice measure space. A set E in ß is called a µ-atom if  

1) µ(E) > 0 and  

2) If Fß such that F is contained in E, then either µ(E-F) = 0 or µ(F) = 0. 

 

Definition3.3:  Let ß be a lattice σ – algebra on a set Y. A set E in ß is said to be an atom of ß 

if  
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1) E ≠   and  

2) F in ß, F is contained in E implies F =   or F = E. 

Example 3.1[5]: The chain of natural numbers has just one atom, the number 2. 

Example 3.2: The set of natural numbers under divisible order, all primes are atoms. 

Note 3.1: A lattice σ – algebra ß of Y is said to be atomless if there are no atoms of ß. 

Definition3.4:  Lattice semi-finite measure: A lattice measure µ on a lattice σ – algebra ß of 

Y is said to be semi finite if Fß, µ(F) = ∞ implies there exists E  ß such that E is 

contained in F and 0 < µ(E) < ∞. 

Result 3.1: Let (Y, ß, µ) be a lattice measure space, if E1 and E2 are atoms, then either 

µ(E1E2) = 0 or µ(E1E2) = 0 or (the lattice measure of any two atoms are either disjoint or 

identical)  

Proof: Let E1and E2 are atoms. Since E1is an atom by definition3.2, E2 ß such that E2is 

contained in E1 implies µ(E1-E2) = 0 or  µ(E2) = 0. Since E2 is an atom µ(E2) ≠ 0 implies 

µ(E1-E2) = 0. By similar argument we have µ(E2-E1) = 0. Now E1E2 = (E1-E2)  (E2-E1) 

implies µ(E1E2) = µ(E1-E2)  + µ(E2-E1) implies µ(E1E2) = 0. Also evidently (E1E2) = 

(E1E2)   (E1E2) implies µ(E1E2) = µ(E1E2) + µ(E1E2) implies µ(E1E2) = 

µ(E1E2) (since µ(E1E2) =0). Again if µ(E1-E2) ≠ 0 then µ(E2) = 0 now E1E2 ≤ E2 

implies µ(E1E2) ≤ µ(E2) implies µ(E1E2) ≤ 0. But µ(E1E2) ≥ 0 (by definition 2.3) 

therefore µ(E1E2) = 0. If E2-E1≠ 0 similarly we get µ(E1E2) = 0. 

Result 3.2: Let (Y, ß, µ) be a lattice measure space and µ is lattice σ – finite measure, then 

the class A of all atoms in a lattice σ-algebra ß is countable. 

Proof: Let E1, E2 A be any two sets by result 3.1. we have either µ(E1E2) = 0 or 

µ(E1E2) = 0. 

If µ(E1E2) = 0 then the set (E1E2) represents an atom or if µ(E1E2) = 0 then (E1-E2) and 

(E2-E1) represents two disjoint atoms. Which implies two disjoint sets in ß – N. Continuing 

this process for E1, E2 ……, we get a countable collection of disjoint sets in ß – N which 

leads ß – N is countable. 
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Theorem 3.1: Let µ be a lattice semi-finite measure on a lattice σ – algebra ß of X. Let N 

denotes the collection of sets of µ - measure zero. Then ß – N satisfies countable chain 

condition (ccc) if and only if µ is lattice σ – finite measure. 

Proof: If µ is lattice σ – finite measure, it is obvious that ß – N satisfies ccc. 

Conversely, if µ(X) < ∞, then there is nothing to prove. 

If µ(Y) = ∞, choose E1 in ß such that 0 < µ(E1) < ∞. Choose E2 in ß such that E2 is contained 

in Y – E1 and 0 < µ(E2) < ∞. Continuing this process we get a sequence of disjoint sets E1, E2, 

…, in ß such that Ei in ß – N and µ(Ei) < ∞. If µ(Y – i
1i
E




 ) < ∞, then we have a 

decomposition of  Y which implies that µ is σ – finite.   µ(Y - i
1i
E




 ) = ∞, choose Eα in ß such 

that Eα is contained in Y – i
1i
E




  and 0 < µ(Eα) < ∞, where α is the first countable ordinal. 

Proceeding inductively, since ß – N satisfies ccc, there exists a countable ordinal β such that 

µ(Y – α
β  α
A


 ) < ∞. This implies that µ is lattice σ – finite measure. 

 

Theorem 3.2: Let ß be a lattice σ – algebra of a set Y. ß is atomless if and only if every non 

empty set in ß contains countable number of disjoint non empty sets in ß. 

Proof: Let E in ß be non empty set. Fix x E, we can choose E1 in E such that x   E1. 

Now E1 is non empty and E1 is contained in E, choose E2 in E such that x   E2. 

Now E2 is non empty and E2 is contained in E-E1, choose E3 in E such that x   E3, 

continuing this process we get a family {Eα / α < β} of non empty disjoint sets contained in ß 

where β is the first uncountable ordinal. 

The converse part is trivial. 

Theorem 3.3: Let ß be a lattice σ – algebra of a set Y. Then is satisfies ccc if and only if ß is 

isomorphic to the power set, that is the class of all subsets, of some countable set. 

Proof: We can prove this theorem by using theorem 3.1. and theorem 3.2. If ß satisfies ccc, 

the number of atoms of ß is countable. From Y remove all atoms of ß. In the view of above 

theorem3.2. the remaining part is empty. Hence it is isomorphic. 
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Example 3.3: Take the numbers 0,1 and the fractions 
n

m
,   1

n

m
0      that is  

0, 1, .......,.........
5

4
,

5

3
,

5

2
,

5

1
,

4

3
,

4

2
,

4

1
,

3

2
,

3

1
,

2

1
 order as follows 1

n

m
0   for all 

n

m
; 

s

r

n

m
  only 

if max(m, r) = r ; 
s

r
  ,

n

m
 in comparable if n ≠ s. clearly the fractions from 0 to 1 has a 

countable infinity of atoms and of dual of atoms.  
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