Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Iss 4, 2021

Double slope solar distiller with PCM and nanofluid a future scope

A.Sangeetha

Research Centre for Solar Energy, Department of Engineering Physics, College of Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur 522502, Andhra Pradesh, India. <u>asangeetha29072021@gmail.com</u>

Abstract

Fresh water drinking demands raising in the model life styles because of increased the domestic applications. Solar energy technique based desalination is practically apply for the above mentioned problem. Peoples are suffering in the rural areas for water and electricity. Our Double slope solar distiller is improve the performance through phase change materials and nanofluids. Its useful for the global challenge to achieve the purify water this chapter gives the ideas its leads to the future possibilities.

Introduction

Rajamanickam and Ragupathy [1]. The double slope distiller achieved maximum daily productivity around 3.07 Litre/m² day aquatic deepness for 0.01m. Also impact of water movement amount mass transfer as everyday efficiency on cascaded solar distiller produced as Tabrizi et al [2]. The total purified yield was 4.30 and 7.50 kg.m².day, maximum, least movement taxes, individually. On the other hand, researchers by nanoparticles have used ameliorate performance desalination system. Sahota and Tiwari [3] investigate the special effects of Al₂O₃ nanoparticle at different concentration (0.04%, 0.08% and 0.12%) in Passive double slope solar stiller. The effects of 0.12% Al₂O₃ nanoparticle concentration achieved the protectivity of 35kg (12.2%) and 80kg (8.4%). Madhu et al[4] use Al₂O₃, CuO and TiO₂ nanoparticles in a stepped solar still varied the concentration from m 0.05 to 0.2%. Compared to another nanomaterial Al₂O₃ (0.2%) improves the stepped solar still performance up to 67% Kabeel et al. [5] have investigated the result of using of cuprous oxide ratio various upto (10% to 40%) mixed with black coat and examine thermal performance of the solar distiller. Due to the nanoparticle concentration enhance heat transfer rate and attain distillate efficiency 25% for the concentration of 40% cuprous oxide.

Research paper

© 2012 LIFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Iss 4, 2021

Fig.1 Review based material and properties

Fig.2 Classification - Solar distiller

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Iss 4, 2021

Fig. 3 Schematic (DSSS) diagram

Fig. 4 Productivity enhancement through PCM & nanofluid

Table 1:

S.No	Author	work done	Results

1	Raiamanickam et al	DSSS Used charcoal	Thermal efficiency(49.47%) and
1	rujumumenum et ur		
			distillate yield(3025 ml/ day) at a
			water depth 0.01 m
2	Shanmugan and	Honeycomb	Productivity increased by 30
	Krishnamoorthi	(transparent) type	% compared with conventional
		structure	DSSS
3	Kalidasa Murugavel	DSSS (different	Thermal
		absorbing materials)	performance increased by 52 %
4.	Tabrizi &Sharak	Heat reservoir	Productivity of DSSS (3.89 L/m2
		integrated with	
		DSSS)
5	Gajendra Singh et al.	DSSS- PVT	Distillate output 17.5 % increased
6	Tuly et al.	Paraffin	Minimizes the heat
		Wax used in DSSS	losses and increases the
			productivity

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Iss 4, 2021

Conclusion

The DUSS outperformed the CDUSS by 64% with a total distillate output of 14.92 l/m² day and an average efficiency of 38.73%. With more investigation, glass may be replaced with other materials without sacrificing performance. In comparison to the DUSS coated just with BP, the BP-coated DUSS has the maximum BPACNP loading (20 wt%), an all-day average USB temperature of 15.8%, and a mass output of 16.91%. At 1 p.m., when the system's entropy changed more significantly, the maximum instantaneous efficiency of 58.98% was attained.

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Iss 4, 2021

Reference

- MR. Rajamanickam, A. Ragupathy, Influence of Water Depth on Internal Heat and Mass Transfer in a Double Slope Solar Still, Energy Procedia, 14, 2012. <u>https://doi.org/10.1016/j.egypro.2011.12.1155</u>.
- [2] F. Farshchi Tabrizi, M. Dashtban, H. Moghaddam, K. Razzaghi. Effect of water flow rate on internal heat and mass transfer and daily productivity of a weir-type cascade solar still, Desalination, 260, 2010. <u>https://doi.org/10.1016/j.desal.2010.03.037</u>.

[3] L. Sahota, GN. Tiwari, Effect of Al2O3 nanoparticles on the performance of passive double slope solar still, Solar Energy, 130, 2016. https://doi.org/10.1016/j.solener.2016.02.018.

[4] B. Madhu, E. Balasubramanian, P. Nagarajan, S. Ravishankar, AE. Kabeel, T. Arunkumar,Improving the yield of fresh water from conventional and stepped solar still with different nanofluids, Desalination and Water Treatment, 100, 2017. https://doi.org/10.5004/dwt.2017.21279.

[5] AE. Kabeel, ZM. Omara, FA. Essa, A. Abdullah, T. Arunkumar, R. Sathyamurthy, Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles, Alexandria Engineering Journal, 56, 2017. https://doi.org/10.1016/j.aej.2017.08.014