On Rainbow Colouring Of Certain Classes Of Graphs

1.V. Ravi 2. P.Jagadeeswari
1.Mphil scholar 2. Assistant Professor,
Dept of Mathematics, Bharath Institute of Higher Education and Research, Selaiyur, Chennai-73

Abstract

An edge colored graph G is rainbow edge-connected if any two vertices are connected by a path whose edges have distinct colors. We exhibit the rainbow coloring of middle graph of path Pn, Total graph of path Pn, Moser graph and square graph of comb by unique way.

Keywords: Rainbow coloring, Rainbow connection number, middle graph Total graph Moser graph, comb graph

\section*{Introduction:}

Let the rainbow connection of a connection graph G denoted by $\operatorname{rc}(\mathrm{G})$, be the smallest number of colors, that are needed in order to make rainbow edge-connected.. Clearly, if a graph is rainbow edge connected then it is also connected[1]. Conversely, any connected graph has a trivial edge coloring that makes it rainbow edge-connected just color each edge with a distinct color. Thus the following natural graph parameter was defined by Chartrand et al.[2]

Preliminaries:

Definition1

A path is a rainbow, if no two edges of it are colored the same. An edge-coloring graph G is rainbow connected if any two vertices are connected by a rainbow path.

Definition 2

The square graph G^{2} of an undirected graph G is another graph that has the same set of vertices but in which two vertices are adjacent when their distance in G is at most 2 .

The structure of square graph of comb is given below [3].

Figure 1: Square graph of comb

Definition 3:

The Moser graph which is also called Moser spindle is an undirected graph with 7 vertices and 11 edges [4].

Figure 2: Moser-spindle graph

Definition 4:

The Middle graph $M(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it [5].

Figure 3: Middle graph of path \mathbf{P}_{5}

Definition 5:

The total graph $T(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G [5].

Figure 4: Total graph of path graph

Main Results:

Theorem 1:

Middle graph of path P_{n} admits rainbow coloring, and whose rainbow connection number $\gamma_{\mathrm{c}}(\mathrm{G})=\mathrm{n}+1$ where ' n ' represents number of vertices in the path.

Proof:

Let $G=M\left(P_{n}\right)$ and let $u_{1}, u_{2} \ldots u_{n}$ be the path vertices of $G . v_{1} v_{2} \ldots v_{n+1}$ be the pendant vertices which are lower vertices of G and edge set $E(G)=\left\{u_{i} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)\right\} \cup$ $\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}+1} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}\right.$

Let $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots \mathrm{n}\}$ is defined as follows:
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i}+1, \mathrm{i}=1,2, \ldots \mathrm{n}-1$
(ii) $f\left(u_{1} v_{1}\right)=1$
(iii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\mathrm{i}+1, \mathrm{i}=1,2, \ldots \mathrm{n}-1$
(iv) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1} \mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i}+1, \mathrm{i}=1,2, \ldots \mathrm{n}-1$

Example 1:

Figure 5: Middle graph of path \mathbf{P}_{3}

Example 2:

Figure 6: Middle graph of Path $\mathbf{P}_{\mathbf{4}}$

Theorem 2:

Total graph of path P_{n} holds rainbow coloring, and rainbow connection number is n .

Proof:

Let $G=T\left(P_{n}\right)$ and let $u_{1}, u_{2} \ldots u_{n}$ be the upper vertices in the path and $v_{1}, v_{2} \ldots v_{n+1}$ be the lower most vertices in the path and edge set $E(G)=\left\{\left(u_{i} u_{i+1}\right) \cup\left(u_{i} v_{i}\right) \cup\left(u_{i} v_{i+1}\right) \cup\right.$ $\left.\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$

Let $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots \mathrm{n}\}$ is defined as follows:
(i) $f\left(u_{i} u_{i+1}\right)=i+1$, for $\mathrm{i}=1,2, \ldots \mathrm{n}-1$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}$, for $\mathrm{i}=1,2, \ldots \mathrm{n}-1$
(iii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\mathrm{i}$, for $\mathrm{i}=1,2, \ldots \mathrm{n}$
(iv) $f\left(v_{i} v_{i+1}\right)=i$, for $i=1,2, \ldots n$

Example 1:

Figure 7: Total graph $\mathbf{T}\left(\mathbf{P}_{4}\right)$

Example 2:

Figure 8: Total graph $\mathbf{T}\left(\mathrm{P}_{5}\right)$

Theorem 3:

The square graph of comb admits rainbow coloring and whose rainbow connection number is $n-1$ wherein ' n ' represents number of vertices in the path.

Proof:

Let G be the square graph of comb and is denoted by $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)^{2}$ with vertex set $\mathrm{V}=\left\{\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and edge set $\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup \mathrm{E}_{3}$ where
$E_{1}=\left\{x_{i} x_{i+1}, x_{i} y_{i+1}\right\}, i=1,2, \ldots n-1$
$\mathrm{E}_{2}=\left\{\mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}+2}, \mathrm{y}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}+1}\right\}$
$E_{3}=\left\{x_{i} y_{i}\right\}$
Let $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots \mathrm{n}-1\}$ is defined as follows:
(i) $f\left(x_{i} x_{i+1}\right)=\mathrm{i}$, for $\mathrm{i}=1,2, \ldots n$
(ii) $f\left(x_{i} y_{i+1}\right)=\mathrm{i}$, for $\mathrm{i}=1,2, \ldots \mathrm{n}$
(iii) $f\left(x_{i} x_{i+2}\right)=i+1$, for $\mathrm{i}=1,2, \ldots \mathrm{n}$
(iv) $f\left(y_{i} x_{i+1}\right)=i$, for $i=1,2, \ldots n$
(v) $f\left(x_{1} y_{1}\right)=2$
(vi) $f\left(x_{i} y_{i}\right)=i-1$, for $i=2,3,4, \ldots n$

Illustration 1:

Figure 9: $\left(\mathbf{P}_{3} \odot K_{1}\right)$

Illustration 2:

Figure 10: $\left(\mathbf{P}_{\mathbf{4}} \odot \mathrm{K}_{1}\right)^{\mathbf{2}}$

Theorem 4:

The Moser-Spindle graph which acknowledges rainbow coloring, whose rainbow connection number is 4 .

Proof:

Consider the Moser Spindle graph with 7 vertices and 11 edges. Let u_{j} be the vertex set $0 \leq \mathrm{j} \leq 6$.

Then the edge function f * is defined as follows:
(i) $\mathrm{f}^{*}\left(\mathrm{u}_{0} \mathrm{u}_{1}\right)=1$
(ii) $\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=3$
(iii) $\mathrm{f}^{*}\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=2$
(iv) $f^{*}\left(u_{3} u_{4}\right)=4$
(v) $\mathrm{f}^{*}\left(\mathrm{u}_{0} \mathrm{u}_{4}\right)=2$
(vi) $\mathrm{f}^{*}\left(\mathrm{u}_{0} \mathrm{u}_{5}\right)=1$
(vii) $\mathrm{f}^{*}\left(\mathrm{u}_{5} \mathrm{u}_{2}\right)=3$
(viii) $\mathrm{f}^{*}\left(\mathrm{u}_{0} \mathrm{u}_{6}\right)=2$
(ix) $f^{*}\left(u_{6} u_{3}\right)=4$

Example:

Figure 11: Moser-Spindle $\gamma_{c}(\mathbf{G})=4$

Conclusion:

Rainbow connection number for Middle graph of Path Pn, Total graph of path Pn are n+1,n respectively.

Square graph of comb's rainbow connection number is $n-1$, (n-number of vertices) MoserSpindle graph's rainbow connection number is 4have been discussed. It is of interest to give Harmonious coloring, greedy coloring etc. for these type of graphs

References:

[1] Chakraborty, Fisher, S., Matsliah, E. and Yuster, R., "Hardness and algorithms for rainbow connection", J. Combin Optimization, pp. 1-18 (2009).
[2] Chartand et al., "Rainbow connection in graphs", Math. Bohem, Vol. 133 (2008).
[3] Esakkiammal, E., Deepa, B. and Thirusangu, K., "Some Labelings on Square Graph of Comb", International Journal of Mathematics Trends and Technology (IJMTT) - Special Issue NCCFQET.
[4] Mydeen Bibi, A, Malathi, M., "Equality Labeling On Special Graphs", International Journalof Modern trends in Engineering and Research, Vol. 5, Issue 4, pp. 67-78 (2018
[5]Shiama, J., "Square sum labeling for some middle and total graphs", International Journal of Computer Applications, Vol. 37, No. 4 (2012).

