Group Mean Cordial Labeling of Triangular Snake Related Graphs

R.N.RAJALEKSHMI, Research Scholar, Department of Mathematics,
ManonmaniamSundaranar University, Abishekapatti, Tirunelveli, India, ${ }^{1}$ rajalekshmimoni@gmail.com
R.KALA, Department of Mathematics, ManonmaniamSundaranar University, Abishekapatti, Tirunelveli, India, arthipyi91@gmail.com

Abstract

Let G be a (p, q) graph and let A be a group. Let $g: V(G) \rightarrow A$ be a map. For each edge $x y$ assign the label $\left[\frac{o(g(x))+o(g(y))}{2}\right]$. Here $o(g(x))$ denotes the order of $g(x)$ as an element of the group A. Let I be the set of all integers that are labels of the edges of G. g is called a group mean cordial labeling if the following conditions hold: (1) For $\mathrm{a}, \mathrm{b} \in \mathrm{A},\left|v_{g}(a)-v_{g}(b)\right| \leq 1$, where $v_{g}(a)$ is the number of vertices labeled with a. (2) For $\mathrm{r}, \mathrm{s} \in \mathrm{I},\left|e_{g}(r)-e_{g}(s)\right| \leq 1$, where $e_{g}(r)$ denote the number of edges labeled with r .

A graph with a group mean cordial labeling is called a group mean cordial graph. In this paper, we take A as the group of fourth roots of unity and prove that, Triangular snake, Double triangular snake and Alternate triangular snake are group mean cordial graphs.

Keywords - Cordial labeling, mean labeling, group mean cordial labeling,Triangular snake, Double triangular snake, Alternate triangular snake.

AMS Subject Classification- 05C78.

I. INTRODUCTION

Graphs considered here are finite, undirected and simple. Terms not defined here are used in the sense of Harary and Gallian [3]. Somasundaram and Ponraj introduced the concept of mean labeling of graphs.
Definition 1.1. [6] A graph G with p vertices and q edges is a mean graph if there is an injective function g from the vertices of G to $0,1,2, \ldots$, q such that when each edge xy is labeled with $\frac{g(x)+g(y)}{2}$ if $\mathrm{g}(\mathrm{x})+\mathrm{g}(\mathrm{y})$ is even and $\frac{g(x)+g(y)+1}{2}$ if $g(\mathrm{x})+\mathrm{g}(\mathrm{y})$ is odd then the resulting edge labels are distinct. Cahit [2] introduced the concept of cordial labeling.
Definition 1.2. [2] Let $\mathrm{g}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ be any function. For each edge uv assign the label $|\mathrm{g}(\mathrm{u})-\mathrm{g}(\mathrm{v})| \mathrm{g}$ is called a cordial labeling if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1 . Also the number of edges labeled 0 and the number of edges labeled 1 differ by at most 1 .
Ponraj et al. [5] introduced mean cordial labeling of graphs.
Definition 1.3. [5] Let g be a function from the vertex set $V(G)$ to $\{0,1,2\}$. For each edge xy assign the label $1\left[\frac{g(x)+g(y)}{2}\right]$. gis called a mean cordial labeling if $\left|\mathrm{v}_{\mathrm{g}}(\mathrm{r})-\mathrm{v}_{\mathrm{g}}(\mathrm{s})\right| \leq 1$ and $\left|e_{g}(r)-e_{g}(s)\right| \leq 1 \mathrm{r}, \mathrm{s} \in\{0$, $1,2\}$, where $\mathrm{v}_{\mathrm{g}}(\mathrm{u})$ and $\mathrm{e}_{\mathrm{g}}(\mathrm{u})$ respectively denote the number of vertices and edges labeled with $u(u=0,1$, 2). A graph with a mean cordial labeling is called a mean cordial graph.

Athisayanathan et al. [1] introduced the concept of group A cordial labeling.

II. MAIN RESULTS

Definition 2.1.Let G be a (p, q) graph and let A be a group. Let $g: V(G) \rightarrow A$ be a map. For each edge $x y$ assign the label $\left[\frac{o(g(x))+o(g(y))}{2}\right]$. Hereo $(g(x))$ denotes the order of $g(x)$ as an element of the group A. Let I be the set of all integers that are labels of the edges of G. g is called a group mean cordial labeling if the following conditions hold:
(1) For $\mathrm{a}, \mathrm{b} \in \mathrm{A},\left|v_{g}(a)-v_{g}(b)\right| \leq 1$, where $v_{g}(a)$ is the number of vertices labeled with a.
(2) For $\mathrm{r}, \mathrm{s} \in \mathrm{I},\left|e_{g}(r)-e_{g}(s)\right| \leq 1$, where $e_{g}(r)$ denote the number of edges labeled with r .

A graph with a group mean cordial labeling is called a group mean cordial graph.
In this paper, we take the group A as the group $\{1,-1, i,-i\}$ which is the group of fourth roots of unity, that is cyclic with generators i and -i .

Theorem 2.1.The Triangular Snake graph T_{n} is a group mean cordial graph for every n .
Proof. Let $P_{n}=x_{1} x_{2} \ldots x_{n}$ be a path. Let $V\left(T_{n}\right)=V\left(P_{n}\right) \cup\left\{y_{j}: 1 \leq j \leq n-1\right\}$. Then $E\left(T_{n}\right)=$ $E\left(P_{n}\right) \cup\left\{x_{j} y_{j}, x_{j+1} y_{j}: 1 \leq j \leq n-1\right\}$. The order and size of T_{n} are $2 \mathrm{n}-1$ and $3 \mathrm{n}-3$.
Case $1: n \equiv 0,1,2(\bmod 4)$.
Define $g: V\left(T_{n}\right) \rightarrow\{1,-1, i,-i\}$ by,
$g\left(x_{j}\right)=\left\{\begin{array}{cl}-1 & \text { if } j \equiv 1(\bmod 4) \\ i & \text { if } j \equiv 2(\bmod 4) \\ -i & \text { if } j \equiv 3(\bmod 4) \\ 1 & \text { if } j \equiv 0(\bmod 4)\end{array}\right.$
and

$$
g\left(y_{j}\right)=\left\{\begin{array}{cc}
1 & \text { if } j \equiv 1(\bmod 4) \\
i & \text { if } j \equiv 2(\bmod 4) \\
-1 & \text { if } j \equiv 3(\bmod 4) \\
-i & \text { if } j \equiv 0(\bmod 4)
\end{array}\right.
$$

Case $2: n \equiv 3(\bmod 4)$.
The group mean cordial labeling of T_{3} is given in Fig.2.2.
Assign the labels as in case 1 to the vertices $x_{j}(1 \leq j \leq \mathrm{n}-3)$ and $y_{j}(1 \leq j \leq \mathrm{n}-4)$.
Next label x_{n-2}, x_{n-1}, x_{n} as $-1, i, 1$ in order and $y_{n-3}, y_{n-2}, y_{n-2}$ as $-1,-i,-i$ in order.
The values of $v_{g}(\mathrm{j})$ and $e_{g}(\mathrm{~s})$ are tabulated in Tables 2.1 and 2.2.

Nature of \boldsymbol{n}	$\boldsymbol{v}_{\boldsymbol{g}}(\boldsymbol{I})$	$\boldsymbol{v}_{\boldsymbol{g}}(-\boldsymbol{l})$	$\boldsymbol{v}_{\boldsymbol{g}}(\boldsymbol{i})$	$\boldsymbol{v}_{\boldsymbol{g}}(-\boldsymbol{i})$
$n \equiv 0,2(\bmod$ $4)$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}-1$
$n \equiv 1,3(\bmod$ $4), n \neq 3$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$

TABLE 2.1.

Hence Table. prove that g is a group mean cordial labeling.
Theorem 2.2. Double Triangular Snake graph $D\left(T_{n}\right)$ is a group mean cordial graph for every n .
Proof. Let $P_{n}=x_{1} x_{2} \ldots x_{n}$ be the common path. Let $a_{j}, b_{j}(1 \leq j \leq n-1)$ be the newly added vertices.Then $\mathrm{E}\left(\mathrm{D}\left(T_{n}\right)\right)=\mathrm{E}\left(P_{n}\right) \cup\left\{x_{j} a_{j}, x_{j+1} a_{j}, x_{j} b_{j}, x_{j+1} b_{j}: 1 \leq j \leq n-1\right\}$. The order and size of $\mathrm{D}\left(T_{n}\right)$ are $3 \mathrm{n}-2$ and 5n-5.Define $g: V\left(T_{n}\right) \rightarrow\{1,-1, i,-i\}$ by,

$$
g\left(x_{j}\right)=\left\{\begin{array}{cl}
1 & \text { if } j \equiv 1(\bmod 4) \\
-1 & \text { if } j \equiv 2(\bmod 4) \\
i & \text { if } j \equiv 3(\bmod 4) \\
-i & \text { if } j \equiv 0(\bmod 4)
\end{array} \text { and } g\left(a_{j}\right)=g\left(b_{j}\right)=\left\{\begin{array}{cl}
i & \text { if } j \equiv 1(\bmod 4) \\
1 & \text { if } j \equiv 2(\bmod 4) \\
-i & \text { if } j \equiv 3(\bmod 4) \\
-1 & \text { if } j \equiv 0(\bmod 4)
\end{array}\right.\right.
$$

Case $2: n \equiv 2(\bmod 4)$. Assign the labels to the vertices $x_{j}(1 \leq j \leq n-1)$ and $a_{j}, b_{j}(1 \leq j \leq n-2)$ as in case 1.Then assign $i,-1,-i$ to the vertices x_{n}, a_{n-1}, b_{n-1} in order. Case 3:n $\equiv 3(\bmod 4)$.
Assign the labels to the vertices $x_{j}(1 \leq j \leq n-2)$ and $a_{j}, b_{j}(1 \leq j \leq n-3)$ as in case 1 . Next label a_{n-2}, b_{n-2} with $-1 ; x_{n-1}, a_{n-1}$ with $i ; x_{n}$ with $-i$ and b_{n-1} with 1.Case $4: n \equiv 0(\bmod 4)$.
Assign the labels to the vertices $x_{j}(1 \leq j \leq n-3)$ and $a_{j}, b_{j}(1 \leq j \leq n-4)$ as in case 1 . Next assign i to the vertices $x_{n-2}, a_{n-2} ;-1$ to the vertices $a_{n-3}, b_{n-3}, b_{n-2} ;-i$ to the vertices x_{n-1}, a_{n-1} and assign 1 to the verices x_{n}, b_{n-1}.
Tables $2.3 \& 2.4$ prove that g is a group mean cordial labeling.

Nature of \boldsymbol{n}	$\boldsymbol{v}_{\boldsymbol{g}}(\mathbf{1})$	$\boldsymbol{v}_{\boldsymbol{g}}(-\mathbf{1})$	$\boldsymbol{v}_{\boldsymbol{g}}(\boldsymbol{i})$	$\boldsymbol{v}_{\boldsymbol{g}}(\boldsymbol{- i})$
$n \equiv 0(\bmod 4)$	$\frac{3 n}{4}$	$\frac{3 n}{4}$	$\frac{3 n}{4}-1$	$\frac{3 n}{4}$
$n \equiv 1(\bmod 4)$	$\frac{3 n+1}{4}$	$\frac{3 n-3}{4}$	$\frac{3 n-3}{4}$	$\frac{3 n-3}{4}$
$n \equiv 2(\bmod 4)$	$\frac{3 n-2}{4}$	$\frac{3 n-2}{4}$	$\frac{3 n-2}{4}$	$\frac{3 n-2}{4}$
$n \equiv 3(\bmod 4)$	$\frac{3 n-1}{4}$	$\frac{3 n-1}{4}$	$\frac{3 n-1}{4}$	$\frac{3 n-5}{4}$

TABLE 2.3.
Theorem 2.3.The Alternate Triangular Snake $\mathrm{A}\left(T_{n}\right)$ is a group mean cordial graph when n is odd.
Proof. Let $P_{n}=x_{1} x_{2} \ldots x_{n}$ be a path.
Case 1: The Alternative Triangular snake starts with triangle.
Let $V\left(A\left(T_{n}\right)\right)=V\left(P_{n}\right) \cup\left\{y_{j}: 1 \leq j \leq \frac{n-1}{2}\right\}$. Then $E\left(A\left(T_{n}\right)\right)=E\left(P_{n}\right) \cup\left\{x_{j} y_{\frac{j+1}{2}}: j \equiv 1(\bmod 2) \cup\right.$
$\left\{x_{j} y_{\frac{j}{2}}: j \equiv 0(\bmod 2)\right\}$.
The order and size of this graph are $\frac{3 n-1}{2}$ and $2 \mathrm{n}-2$.
Subcase 1.1:n $\equiv 1(\bmod 8)$.
Define $g: V\left(A\left(T_{n}\right)\right) \rightarrow\{1,-1, i,-i\}$ by,
$g\left(x_{j}\right)=\left\{\begin{array}{cl}1 & \text { if } j \equiv 0,1,2(\bmod 8) \\ -1 & \text { if } j \equiv 4,5(\bmod 8) \\ i & \text { if } j \equiv 3,6,7(\bmod 8)\end{array}\right.$ and $g\left(y_{j}\right)= \begin{cases}-1 & \text { if } j \equiv 1 \quad(\bmod 4) \\ -i & \text { if } j \equiv 0,2,3(\bmod 4)\end{cases}$
Subcase 1.2:n $\equiv 3(\bmod 8)$.
Label the vertices $x_{j}(1 \leq j \leq n-2), y_{j}\left(1 \leq j \leq \frac{n-1}{2}\right)$ as in subcase 1.1. Then label x_{n-1} with i and y_{n} with $-i$.

Subcase 1.3:n $\equiv 5(\bmod 8)$.
Label the vertices $x_{j}(1 \leq j \leq n-4), y_{j}\left(1 \leq j \leq \frac{n-5}{2}\right)$ as in subcase 1.1. Next define $g\left(x_{n-3}\right)=$ 1; $g\left(x_{n-2}\right)=-1 ; g\left(x_{n-1}\right)=g\left(x_{n}\right)=i$ and $g\left(y_{\frac{n-3}{2}}\right)=g\left(y_{\frac{n-1}{2}}\right)=-i$.

REFERENCES

[1] S.Athisayanathan, R.Ponraj, and M. K.Karthik Chidambaram, Group A cordial labeling of Graphs,

International Journal of Applied Mathematical Sciences, Vol 10, No.1(2017),1-11 .
[2] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, ArsCombin., 23(1987), 201207.
[3] J. A.Gallian, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics, Dec 7(2015), No. DS6.
[4] F.Harary, Graph Theory, Addison Wesley, Reading Mass, 1972.
5] R.Ponraj, M.Sivakumar, M.Sundaram, Mean cordial labeling of graphs, Open Journal of Discrete Mathematics, No.2(2012), 145-148.
[6] S. Somasundaram and R. Ponraj, Mean labeling of graphs, Natl.Acad.Sci.Let. 26(2003), 210-213.

