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ABSTRACT — Let G be a (p, q) graph and let A be a group. Let  𝑔 ∶   𝑉 (𝐺)  →  𝐴 be a map. For each edge xy 

assign the label⌊
𝑜(𝑔(𝑥))+𝑜(𝑔(𝑦))

2
⌋. Here 𝑜(𝑔(𝑥))denotes the order of 𝑔(𝑥) as an element of the group A. Let I be 

the set of all integers that are labels of the edges of G. g is called a group mean cordial labeling if the following 

conditions hold: 

(1) For a, b ∈ A, |𝑣𝑔 (𝑎) − 𝑣𝑔 (𝑏)| ≤ 1, where 𝑣𝑔 (𝑎) is the number of vertices labeled with a. 

(2) For r, s ∈ I, |𝑒𝑔 (𝑟) − 𝑒𝑔 (𝑠)| ≤ 1, where 𝑒𝑔 (𝑟) denote the number of edges labeled with r.  

A graph with a group mean cordial labeling is called a group mean cordial graph. In this paper, we take A as 

the group of fourth roots of unity and prove that, Triangular snake, Double triangular snake and Alternate 

triangular snake are group mean cordial graphs. 
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I. INTRODUCTION 

Graphs considered here are finite, undirected and simple. Terms not defined here are used in the sense of 

Harary and Gallian [3]. Somasundaram and Ponraj introduced the concept of mean labeling of graphs. 

Definition 1.1. [6] A graph G with p vertices and q edges is a mean graph if there is an injective function g 

from the vertices of G to 0, 1, 2, ..., q such that when each edge xy is labeled with
𝑔(𝑥)+𝑔(𝑦)

2
 if g(x) + g(y) is 

even and 
𝑔(𝑥)+𝑔(𝑦)+1

2
 if g(x) + g(y) is odd then the resulting edge labels are distinct. Cahit [2] introduced the 

concept of cordial labeling. 

Definition 1.2. [2] Let g : V (G) → {0, 1} be any function. For each edge uv assign the label |g(u) − g(v)|. g 

is called a cordial labeling if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at 

most 1. Also the number of edges labeled 0 and the number of edges labeled 1 differ by at most 1. 

Ponraj et al. [5] introduced mean cordial labeling of graphs. 

Definition 1.3. [5] Let g be a function from the vertex set V (G) to {0, 1, 2}. For each edge xy assign the 

label l ⌈
𝑔(𝑥)+𝑔(𝑦)

2
⌉. g is called a mean cordial labeling if |vg (r) –vg (s)| ≤ 1 and|𝑒𝑔 (𝑟) − 𝑒𝑔 (𝑠)| ≤ 1 r, s ∈ {0, 

1, 2}, where vg (u) and eg (u) respectively denote the number of vertices and edges labeled with u (u = 0, 1, 

2). A graph with a mean cordial labeling is called a mean cordial graph. 

Athisayanathan et al. [1] introduced the concept of group A cordial labeling.  

II. MAIN RESULTS 

 

Definition 2.1.Let G be a (p, q) graph and let A be a group. Let  𝑔 ∶   𝑉 (𝐺)  →  𝐴 be a map. For each edge xy 

assign the label⌊
𝑜(𝑔(𝑥))+𝑜(𝑔(𝑦))

2
⌋. Here𝑜(𝑔(𝑥))denotes the order of 𝑔(𝑥) as an element of the group A. Let I 

be the set of all integers that are labels of the edges of G. g is called a group mean cordial labeling if the 

following conditions hold: 
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(1) For a, b ∈ A, |𝑣𝑔 (𝑎) − 𝑣𝑔 (𝑏)| ≤ 1, where 𝑣𝑔 (𝑎) is the number of vertices labeled with a. 

(2) For r, s ∈ I, |𝑒𝑔 (𝑟) − 𝑒𝑔 (𝑠)| ≤ 1, where 𝑒𝑔 (𝑟) denote the number of edges labeled with r.  

A graph with a group mean cordial labeling is called a group mean cordial graph.   

 

In this paper, we take the group A as the group {1, −1, i, −i} which is the group of fourth roots of unity, that 

is cyclic with generators i and −i. 

 

Theorem 2.1.The Triangular Snake graph 𝑇𝑛 is a group mean cordial graph for every n. 

Proof. Let 𝑃𝑛 = 𝑥1𝑥2 …𝑥𝑛 be a path. Let 𝑉(𝑇𝑛) =  𝑉(𝑃𝑛) ∪ {𝑦𝑗: 1 ≤ 𝑗 ≤  𝑛 − 1 }. Then 𝐸(𝑇𝑛) =

𝐸(𝑃𝑛) ∪  {𝑥𝑗𝑦𝑗, 𝑥𝑗+1𝑦𝑗: 1 ≤ 𝑗 ≤  𝑛 − 1 }. The order and size of  𝑇𝑛are  2n-1  and  3n-3 . 

Case 1: 𝑛 ≡ 0,1,2 (mod  4). 

Define  𝑔:  𝑉(𝑇𝑛) → {1, −1, 𝑖, −𝑖}  by, 

 

𝑔(𝑥𝑗) ={

−1 𝑖𝑓 𝑗 ≡ 1 (𝑚𝑜𝑑 4)
𝑖 𝑖𝑓 𝑗 ≡ 2 (𝑚𝑜𝑑 4)

−𝑖 𝑖𝑓 𝑗 ≡ 3 (𝑚𝑜𝑑 4)
1 𝑖𝑓 𝑗 ≡ 0 (𝑚𝑜𝑑 4)

 

and 

 

𝑔(𝑦𝑗) ={

1 𝑖𝑓 𝑗 ≡ 1 (𝑚𝑜𝑑 4)
𝑖 𝑖𝑓 𝑗 ≡ 2 (𝑚𝑜𝑑 4)

−1 𝑖𝑓 𝑗 ≡ 3 (𝑚𝑜𝑑 4)
−𝑖 𝑖𝑓 𝑗 ≡ 0 (𝑚𝑜𝑑 4)

 

 

Case 2: 𝑛 ≡ 3 (mod  4). 

The group mean cordial labeling of 𝑇3  is given in Fig.2.2. 

Assign the labels as in case 1 to the vertices  𝑥𝑗  (1 ≤ 𝑗 ≤ n-3)  and 𝑦𝑗 (1 ≤ 𝑗 ≤ n-4) .  

Next label  𝑥𝑛−2, 𝑥𝑛−1,  𝑥𝑛  as −1, 𝑖, 1 in order and 𝑦𝑛−3, 𝑦𝑛−2, 𝑦𝑛−2 as −1, −𝑖,−𝑖 in order. 

The values of 𝑣𝑔 (j) and 𝑒𝑔(s) are tabulated in Tables 2.1 and 2.2. 

 
Nature of n 𝒗𝒈 (1) 𝒗𝒈(-1) 𝒗𝒈 (i) 𝒗𝒈(-i) 

𝑛 ≡ 0,2 (mod  

4) 

𝑛

2
 

𝑛

2
 

𝑛

2
 

𝑛

2
− 1 

𝑛 ≡ 1,3 (mod  

4), 𝑛 ≠ 3 

𝑛 − 1

2
 

𝑛 + 1

2
 
𝑛 − 1

2
 
𝑛 + 1

2
 

 

TABLE 2.1. 

 

Hence Table. prove that 𝑔 is a group mean cordial labeling. 

 

Theorem 2.2. Double Triangular Snake graph 𝐷 (𝑇𝑛) is a group mean cordial graph for every n. 

Proof. Let 𝑃𝑛 = 𝑥1𝑥2 …𝑥𝑛 be the common path. Let  𝑎𝑗 , 𝑏𝑗 (1≤ 𝑗 ≤ 𝑛 − 1) be the newly added vertices.Then  

E(D(𝑇𝑛)) =E(𝑃𝑛) ∪ {𝑥𝑗𝑎𝑗, 𝑥𝑗+1𝑎𝑗, 𝑥𝑗𝑏𝑗, 𝑥𝑗+1𝑏𝑗  ∶  1 ≤ 𝑗 ≤ 𝑛 − 1 }. The order and size of D (𝑇𝑛) are 3n-2 and 

5n-5.Define  𝑔:  𝑉(𝑇𝑛) → {1,−1, 𝑖, −𝑖}  by, 
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𝑔(𝑥𝑗) ={

1 𝑖𝑓 𝑗 ≡ 1 (𝑚𝑜𝑑 4)
−1 𝑖𝑓 𝑗 ≡ 2 (𝑚𝑜𝑑 4)

𝑖 𝑖𝑓 𝑗 ≡ 3 (𝑚𝑜𝑑 4)
−𝑖 𝑖𝑓 𝑗 ≡ 0 (𝑚𝑜𝑑 4)

and 𝑔(𝑎𝑗) =  𝑔(𝑏𝑗) =

{
 

 
𝑖 𝑖𝑓 𝑗 ≡ 1 (𝑚𝑜𝑑 4)

   1   𝑖𝑓 𝑗 ≡ 2 (𝑚𝑜𝑑 4)

−𝑖 𝑖𝑓 𝑗 ≡ 3 (𝑚𝑜𝑑 4)

−1 𝑖𝑓 𝑗 ≡ 0 (𝑚𝑜𝑑 4)

 

Case 2:𝑛 ≡  2  (𝑚𝑜𝑑  4). Assign the labels to the vertices 𝑥𝑗(1 ≤ 𝑗 ≤  𝑛 − 1) 𝑎𝑛𝑑  𝑎𝑗, 𝑏𝑗(1 ≤ 𝑗 ≤  𝑛 − 2)  

as in case 1.Then assign  𝑖, −1,−𝑖  to the vertices  𝑥𝑛 , 𝑎𝑛−1, 𝑏𝑛−1 in order. Case 3:𝑛 ≡  3  (𝑚𝑜𝑑  4). 
Assign the labels to the vertices 𝑥𝑗(1 ≤ 𝑗 ≤   𝑛 − 2) 𝑎𝑛𝑑  𝑎𝑗 , 𝑏𝑗(1 ≤ 𝑗 ≤  𝑛 − 3)  as in case 1. Next label 

𝑎𝑛−2, 𝑏𝑛−2 with  −1  ;  𝑥𝑛−1, 𝑎𝑛−1 with  𝑖 ; 𝑥𝑛with −𝑖  and 𝑏𝑛−1with 1.Case 4:𝑛 ≡  0  (𝑚𝑜𝑑  4). 

Assign the labels to the vertices 𝑥𝑗(1 ≤ 𝑗 ≤   𝑛 − 3) 𝑎𝑛𝑑  𝑎𝑗, 𝑏𝑗(1 ≤ 𝑗 ≤  𝑛 − 4)  as in case 1. Next assign i 

to the vertices 𝑥𝑛−2, 𝑎𝑛−2 ; -1  to the vertices  𝑎𝑛−3, 𝑏𝑛−3, 𝑏𝑛−2;  −𝑖  to the vertices 𝑥𝑛−1, 𝑎𝑛−1   and assign   1  

to the verices𝑥𝑛, 𝑏𝑛−1. 

Tables 2.3 & 2.4 prove that  𝑔  is a group mean cordial labeling. 

 
Nature of n 𝒗𝒈 (1) 𝒗𝒈 (-1) 𝒗𝒈 (i) 𝒗𝒈 (-i) 

𝑛 ≡ 0 (mod  4) 3𝑛

4
 

3𝑛

4
 

3𝑛

4
− 1 

3𝑛

4
 

𝑛 ≡ 1 (mod  4) 3𝑛 + 1

4
 
3𝑛 − 3

4
 
3𝑛 − 3

4
 
3𝑛 − 3

4
 

𝑛 ≡ 2 (mod  4) 3𝑛 − 2

4
 
3𝑛 − 2

4
 
3𝑛 − 2

4
 
3𝑛 − 2

4
 

𝑛 ≡ 3 (mod  4) 3𝑛 − 1

4
 
3𝑛 − 1

4
 
3𝑛 − 1

4
 
3𝑛 − 5

4
 

 

TABLE 2.3. 

 

Theorem 2.3.The Alternate Triangular Snake A(𝑇𝑛)is a group mean cordial graph when  𝑛 is odd. 

Proof. Let 𝑃𝑛 = 𝑥1𝑥2…𝑥𝑛 be a path. 

Case 1:  The Alternative Triangular snake starts with triangle. 

Let 𝑉(𝐴(𝑇𝑛)) =  𝑉(𝑃𝑛) ∪ {𝑦𝑗: 1 ≤ 𝑗 ≤
𝑛−1

2
 }. Then 𝐸(𝐴(𝑇𝑛)) =  𝐸(𝑃𝑛) ∪ {𝑥𝑗𝑦𝑗+1

2

: 𝑗 ≡ 1  (𝑚𝑜𝑑 2) ∪

{𝑥𝑗𝑦𝑗
2

:  𝑗 ≡ 0  (𝑚𝑜𝑑 2)}. 

The order and size of this graph are 
3𝑛−1

2
and 2n-2. 

Subcase 1.1:𝑛 ≡  1  (𝑚𝑜𝑑  8).  

Define  𝑔:  𝑉(𝐴(𝑇𝑛)) → {1,−1, 𝑖, −𝑖}  by, 

 

𝑔(𝑥𝑗) =  {

  1 𝑖𝑓  𝑗 ≡ 0,1,2 (𝑚𝑜𝑑 8)

−1 𝑖𝑓  𝑗 ≡ 4,5    (𝑚𝑜𝑑 8)

  𝑖 𝑖𝑓  𝑗 ≡ 3,6,7 (𝑚𝑜𝑑 8)
 and 𝑔(𝑦𝑗) =  {

−1 𝑖𝑓   𝑗 ≡ 1     (𝑚𝑜𝑑 4)

−𝑖  𝑖𝑓  𝑗 ≡ 0,2,3 (𝑚𝑜𝑑 4)
 

Subcase 1.2:𝑛 ≡  3  (𝑚𝑜𝑑  8).  

Label the vertices  𝑥𝑗(1 ≤ 𝑗 ≤  𝑛 − 2), 𝑦𝑗(1 ≤ 𝑗 ≤
𝑛−1

2
)as in subcase 1.1. Then label 𝑥𝑛−1with  𝑖 and 𝑦𝑛with  

−𝑖. 
 

Subcase 1.3:𝑛 ≡  5  (𝑚𝑜𝑑  8).  

Label the vertices  𝑥𝑗(1 ≤ 𝑗 ≤  𝑛 − 4), 𝑦𝑗(1 ≤ 𝑗 ≤
𝑛−5

2
) as in subcase 1.1. Next define 𝑔(𝑥𝑛−3) =

1;  𝑔(𝑥𝑛−2) = −1;  𝑔(𝑥𝑛−1) = 𝑔(𝑥𝑛) = 𝑖 and 𝑔 (𝑦𝑛−3
2

) =  𝑔 (𝑦𝑛−1
2

) =  −𝑖. 
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