
 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
 
  Research paper                  © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11, Iss 9,  Sep  2022 

 

2947 | P a g e  

 

PRINCIPAL OF NILPOTENT LIE GROUPS 

 1 SyedAdil farooq 

SAM Degree College Budgam 

 2 Bashir Ahmad Dar 

SAM Degree College Budgam 

Abstract. We prove Hardy’s type uncertainty principle on connected nilpotent Lie groups for 

the Fourier transform. An analogue of Hardy’s theorem for the Gabor transform has been 

established for connected and simply connected nilpotent Lie groups. Finally Beurling’s 

theorem for the Gabor transform is discussed for groups of the form Rn ×K, where K is a 

compact group. 

1. Introduction 

Heisenberg uncertainty principle relates the uncertainties in the measurement of position 

and moment of microscopic particles. In harmonic analysis, the uncertainty principle relates 

the behavior of a function like support or decay with that of its Fourier transform. For f ∈ 

L1(R), the Fourier transform fb on R is given by 

 

One of the uncertainty principles states that a nonzero integrable function f on following 

theorem of Hardy makes the above statement more precise.b R and its Fourier transform f 

cannot both simultaneously decay rapidly. The 

Theorem 1.1 ([15]). Let f be a measurable function on R such that 

bπξ
2 for all x ∈ R, 

(ii) |f(ξ)| ≤ Ce− for all ξ ∈ R, where a, b, and C are positive constants. If ab > 1, then f 

= 0 a.e. 

 
Key words and phrases. Hardy’s type theorem, Fourier transform, Beurling theorem, continuous Gabor 

transform, nilpotent Lie group. 

Several analogues of the above result have been proved in the setting of Rn, Heisenberg 

group Hn [26], Heisenberg motion group Hn n K [5], locally compact abelian groups, various 
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classes of solvable locally compact groups [3], Euclidean motion group [24], and nilpotent 

Lie groups [2,18,23]. A generalization of Hardy’s theorem is Beurling’s theorem, which can 

be stated as follows. 

Theorem 1.2 ([17]). Let f be a square integrable function on R satisfying 

. 

Then f = 0 a.e. 

Several analogues of Beurling’s theorem for the Fourier transform has been proved for 

exponential solvable Lie groups [1] and various classes of nilpotent Lie groups 

[4,22,23,27,31]. Uncertainty principles like Heisenberg uncertainty inequality and qualitative 

uncertainty principle have been investigated for the Fourier transform (see [6,9,28,29]). For a 

detailed survey of the uncertainty principles for the Fourier transform, we refer to [13]. 

The transformation of a signal using the Fourier transform loses the information about time, 

and it is very difficult to tell where a certain frequency has occurred. Thus, in order to tackle 

such problems, a joint time-frequency analysis was utilized. Gabor transform is turned out to 

be one such tool. The approach used in this technique is cutting the signal into segments 

using a smooth window function and then computing the Fourier transform separately on 

each smaller segment. In this manner, the Gabor transform provides the local aspect of the 

Fourier transform with time resolution equal to the size of the window. It results in a two-

dimensional representation of the signal. 

Let ψ ∈ L2(R) be a fixed function usually called a2 window function. The Gabor transform 

of a function f ∈ L (R) with respect to the window function ψ is defined by Gψf : R × Rb → C 

as 

for all  

In [10], the Gabor transform on a second countable, locally compact, unimodular group G of 

type I has been studied. The Heisenberg uncertainty inequality was proved in [7,30] for the 

Gabor transform for the groups of the form KnRn, where K is a separable unimodular locally 

compact group of type I and connected, simply connected nilpotent Lie groups. Qualitative 

uncertainty principle was proved for the Gabor transform for several classes of locally 

compact groups, including low dimensional nilpotent Lie groups [25]. Later, Hardy’s 

uncertainty principle for the Gabor transform was proved for locally compact abelian groups 

having noncompact identity component and groups of the form Rn ×K, where K is a compact 

group having irreducible representations of bounded dimension [8]. In [11], the spherical 

Gabor transform using the properties of Gelfand pairs and the spherical Fourier transform, 

has been studied and Lieb inequality, Donoho– Stark’s uncertainty principles, and Beckner’s 

uncertainty principles were proved. 

In this paper, analogues of above uncertainty principles on nilpotent Lie groups for the 

Fourier and Gabor transforms have been studied. Results obtained have been organized as 
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follows: In section 3, Hardy’s type results for the Fourier transform have been established for 

connected nilpotent Lie groups. Section 4 deals with an analogue of Hardy’s theorem for the 

Gabor transform. In the last section, we prove Beurling’s theorem for the Gabor transform for 

locally compact abelian groups with noncompact connected component and groups of the 

form Rn × K, where K is a compact group. 

2. Preliminaries 

For a second countable, locally compact, unimodular group G of type I, dx will irreducible 

unitary representations of bG equipped with Plancherel measure dπ. denote the Haar measure 

on G. Let G be the dual space of G consisting of all 

For f ∈ L1 ∩ L2(G), the Fourier transform fbof f is an 

on Gb defined as operator-valued function 

Moreover, by the Plancherel theorem [12, Theorem 7.36],  is a HilbertSchmidt operator 

and satisfies the following property: 

  (2.1) 

For each (x,π) ∈ G×Gb, we defineH(x,π) H(x,πb) = π(x)HS(Hπ), where π(x)HS(Hπ) = {π(x)T : 

T ∈ HS(Hπ)}. Then forms a Hilbert space with the inner product given by 

⟨ π(x)T,π(x)S⟩ H(x,π) = tr(S∗T) = ⟨ T,S⟩ HS(Hπ). 

Also, H(x,π) = HS(Hπ) for all  denote the direct integral of 

{H(x,π)}(x,π) G Gb with respect to the product measure dx dπ. Then 

∈ × 

forms a Hilbert space with the inner product given by c ⟨ F,K⟩  2(G Gb) = Z 
b 

tr[F(x,π)K(x,π)∗] dx dπ. 

 H × 
G×G 
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Let f ∈ C (G), the space of all continuous complex-valued functions on2 G with compact 

support, and let ψ be a fixed function in L (G). For (x,π) ∈ G×Gb, the continuous Gabor 

Transform [10, Definition 3.1] of f with respect to the window function ψ can be defined as a 

measurable field of operators onψ Z 1 G × Gb by 

 

 G f(x,π) := f(y) ψ(x− y) π(y)∗ dy. (2.2) 
G 

One can verify that  is a Hilbert–Schmidt operator for all x ∈ G and for almost all 

π ∈ G. We can extend G2ψ uniquely to a bounded linear operator from L2(G) into a closed 

subspace of H (G×Gb), which will again be denoted by Gψ2ψ, we have. As in [10, Corollary 

3.4], for f1,f2 ∈ L2(G) and window functions ψ1 and 

 ⟨ Gψ1f1,Gψ2f2⟩  = ⟨ ψ2,ψ1⟩ ⟨ f1,f2⟩ . (2.3) 

For detailed study of the Gabor transform on second countable, locally compact, unimodular 

group G of type I, one can refer to [10]. 

3. Nilpotent Lie group 

For a connected nilpotent Lie group G with its simply connected covering group 

G, let Γ. Denoting g by the 

algebra ofe e be a strong Malcev basis of g Lie 

through the ascending central series of g. The norm function on g is defined as the Euclidean 

norm ofwith xj ∈ R, X with respect to the basis B. Indeed, for g 

. 

Define a “norm function” on G by setting 

∥x∥ = inf {∥X∥ : X ∈ g such that expG X = x}. The composed map, Rn → g → 
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Ge given by 

is a diffeomorphism and maps the Lebesgue measure on Rn to the Haar measure measurable 

(integrable) functions one Ge can be viewed as such functions onn Rn. 

on G. In this manner, we identify the Lie algebra g, as a set with R . Also, 

Let g∗ be the vector space dual of  be the basis of g∗, which is dual 

to {X1,...,XG onn}g. Then∗. We shall identify  g∗is a Jordan–Hölder basis forwith 

Rn via the map the coadjoint action of 

, 

and on g∗, the Euclidean norm relative to the basis  is defined as 

. 

Let U denote the Zariski open subset of g∗ of generic elements under the coadjoint 

onThen We = jump indices,the Plancherel measure 

TU=∩{V1T,...,nis a cross-section for the generic orbits, 

andG} \ S, and that W. supports action of G with respect to the basis . Suppose 

that S is the set of 

G with noncompact center can be uniquely written ase (t,z,y), t ∈ R,z ∈ Td, and . Every element of a connected nilpotent Lie 

group 

y ∈ Y, where . We now prove a generalization of the result proved in 

[2]. 

Theorem 3.1. Let G be a connected nilpotent Lie group with noncompact center and let f : G 

→ C be a measurable function satisfying 

 for all (t,z,y) ∈ G and for some 

(ii) ∥πξ(f)∥HS ≤ C(1 + ∥ξ∥2)Ne−πβ∥ξ∥2 for all ξ ∈ W, where α,β, and C are positive real 

numbers and N is a nonnegative integer. If αβ > 1, then f = 0 a.e. 

Before proving this main result, we shall first prove some lemmas. Let K be a compact 

central subgroup of G and let χ be a character of K. For f ∈ L1(G), define fχ : G → C by 

 

fχ(t,z,y) = Z f(t,zk,y) χ(k) dk. 

K 
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Lemma 3.2. Let G be a connected nilpotent Lie group with a compact central subgroup K and 

let f be a measurable function on G satisfying conditions (i) and (ii) of Theorem 3.1. Then the 

function fχ also satisfies these conditions. 

Proof. On normalizing the Haar measure on central subgroup K, we obtain 

|fχ(t,z,y)| ≤ Z C(1 + t2)N e−
2
απt2φ(y) dk 

K 

= C(1 + t2)N e−απt φ(y). 

Also, πξ(fχ) = πξ(f)RK χ(k) πξ(k) dk. If πξ|K is a multiple of some character of K, which is 

different from χ, then by orthogonality relation of compact groups, we have 

Z χ(k) πξ(k) dk = 0. 

K 

Thus, ∥πξ(fχ)∥ ≤ C(1 + ∥ξ∥2)Ne−βπ∥ξ∥2. □ 

Denote by Gc, the maximal compact subgroup of G. Then Gc is connected, contained in 

Z(G), and G/Gc is simply connected. 

Lemma 3.3. Let G be a connected nilpotent Lie group. Suppose that Theorem 3.1 holds for 

all quotient subgroups H = G/C, where C is a closed subgroup of Gc = Z(G)c such that either 

Z(G)c = C or Z(G)c/C = T. Then Theorem 3.1 also holds for G. 

by Lemma 3.2, it follows that the function fχ satisfies the Hardy’s type decay conditions. 

Since , using the hypothesis, we get fχ = 0 a.e. As χ ∈ K is 

arbitrarily chosen, we have f = 0 a.e. □ For a second countable, locally compact group G 
containing R as a closed central subgroup, let S denote a Borel cross-section for the cosets of 

R in G. The inverse image of Haar measure on G/R under the map s → Rs from S → G/R is 

denoted by ds. 

Lemma 3.4. Let G and S be as defined above and let2 N απt2 f : G → C be a 

measurable2 function satisfying |f(ts)| ≤ (1+|t| ) e− ϕ(s), for some α > 0 and ϕ ∈ L (S). 

Define a function g on R  such that g(t) = R (f ∗ f∗)(t) ds, 

where 

Then , for some C1 > 0 and 0 < γ < α. 
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For each t ∈ R Proof. 

and 0 < γ < α, we 

have 

The function

 is bounded on R, say by Kk. 

Set K = max{Kk : 0 ≤ k ≤ N}. Thus, it follows that 

 

Using the Cauchy–Schwarz inequality, we have 

 

where . □ 

We shall now prove Hardy’s type theorem for the Fourier transform for connected 

nilpotent Lie groups having noncompact center. Consider Vk = [ξ1 −  for every 

natural number k, and fix a real number ξ1. For m > 2k, choose a C∞ function vk,m on real line 

such that the support of vk,m is contained in Vk, vk,m = 1 on [ξ1 − 1/2k + 1/m,ξ1 + 1/2k − 1/m] 
and 0 ≤ vk,m ≤ 1. By the Plancherel inversion theorem, there exists 

k,m . 
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For f ∈ L1(G), consider fk,m = uk,m ∗ f and define Fk,m : G → C by 

Fk,m(x) = Z (fk,m ∗ fk,m
∗ )(xz) dz, x ∈ G. T 

Next, we modify [2, Lemma 3.1] in order to prove Theorem 3.1. 

Lemma 3.5. Let f : G → C be a measurable function satisfying condition (i) of Theorem 3.1. 

Then 

 lim kFk,m(e) = 0. 
k,m→∞ 

Proof. For fix 

z,w ∈ T and y ∈ Y 
, define 

Then as proved in [2, Lemma 3.1], we have 

 Fk,m(e) = Z Z Ek,m(z,w,y)dz dw dy (3.1) 

Y T2 

and 

 

Now χVk(t + s) = 0 for all  whenever t /∈ [−k
1, k

1], and if t ∈ [−k
1, k

1], 
then 

χVk(t + ·) = χ[ξ1−t−1/2k,ξ1−t+1/2k] ≤ χ[ξ1−3/2k,ξ1+3/2k]. 

Using condition (i) of hypothesis of Theorem 3.1, we compute 

 

 (3.2) Therefore, from (3.1) and (3.2), it follows 

that 
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Hence,  □ 

It may be observed that the proof of Theorem 3.1 now follows from the technique used in 

[2, Theorem 1.1]. For the sake of completeness, we briefly sketch the proof. For fix ξ2 ∈ R, 

from [2], we have !and 

 , 

where VT′′ = Pi T,i>2 RXi∗. Let 0 < δ < β. Since Pf∈ Wis a polynomial function in η, there exists a 

constant∈ K > 0 such that for all η 

|Pf(η)|(1 + ∥η∥2)N exp(−2(β − δ)∥η∥2) ≤ K. 

As proved in [2], we have 

− 

for all ξ2 ∈ R and D > 0. By Lemma 3.4, for all t ∈ R, we have 

|g(t)| ≤ C1e−γt2/2 

for some C1 > 0 and 0 < γ < α. Since αβ > 1, we can choose γ and δ such that γδ > 1. Then by 

Hardy’s theorem for R, we get g = 0 a.e. Indeed, g is the integral of a positive definite 

function , which implies that f = 0 a.e. and this completes the proof. 

We conclude this section by remarking that if G is a connected nilpotent Lie group that has 

no square integrable irreducible representation and all the coadjoint orbits in g∗ are flat, then 

Hardy’s type theorem holds for G. Let K 

be any compact central subgroup of G. Then H = G/K has no square integrable irreducible 

representation and also satisfies the flat orbit condition. By Lemma 3.3, it is enough to prove 

Hardy’s type theorem for such group H satisfying Hc = T. Then H must have a noncompact 

center and by Theorem 3.1, H satisfies Hardy’s type theorem. Also in view of [2, Proposition 

4.1], it is easy to see that Theorem 3.1 does not hold for nilpotent Lie groups having an 

irreducible square integrable representation in particular reduced Weyl–Heisenberg group, 
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low-dimensional nilpotent Lie groups G5,1/Z, G5,3/Z, and G5,6/Z. For more details of such 

groups, one may refer to [20]. 

4. Analogue of Hardy’s theorem for the Gabor transform 

In this section, we deal with an analogue of Hardy’s theorem for the Gabor transform.  

Lemma 4.1. Let G be a second countable locally compact group. For f,ψ ∈ L2(G) and x ∈ G, 

define fψ
x : G → C such that 

 

fψ
x(y) = f(y) ψ(x−

1y). 

If fψ
x = 0 a.e. for almost all x ∈ G, then either f = 0 a.e. or ψ = 0 a.e. 

Proof. Let us assume that ψ is a nonzero function in L2(G). There exists a subset M of G with 

measure zero such that for all x ∈ G\M, fψ
x = 0 a.e. Indeed G\M is dense in G and G is second 

countable, so we can take a sequence (xj)j∈N contained in G \ M, which is dense in G. Let 

. 

Then V is a nonempty open subset of G and xjV = G. Consider the function 

jS∈N 

 

Clearly h is a strictly positive function on G. Moreover, 

 

Hence, RG |f(t)|h(t) dt = 0, which implies that f · h = 0 a.e. Since h is strictly positive, it 

follows that f = 0 a.e. □ 

Theorem 4.2. Let f be a measurable function on Rn such that |f(x)| ≤ Ce−απ∥x∥2 for all x ∈ Rn 

and let ψ be a window function. Also assume that for almost all 

y ∈ Rn, 

 |Gψf(y,ξ)| ≤ ηy e−βπ∥ξ∥2 for all ξ ∈ Rn, 
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where α,β,C, and ηy are positive scalars and ηy depends upon y. If αβ > 1, then either f = 0 a.e. 

or ψ = 0 a.e. 

Proof. For each y ∈ Rn, define the function Fy : Rn → C such that 

Fy(x) = fψ
y ∗ (fψ

y)∗(x). Then for each ξ ∈ Rn, we have 

 | | | | . 

Also, for each x ∈ Rn, we obtain 

 
Taking C1 = max{ηy

2, C2 ∥ |ψ| ∗ |ψ|∗∥∞}, then 

 for all x ∈ Rn 

and 

 n for all ξ ∈ Rn. n 

Using Hardy’s theorem for R , it follows that Fy = 0 for almost all y ∈ R which further implies 

that fψ
y = 0 for almost all y ∈ Rn. Therefore, using Lemma 4.1, either f = 0 a.e. or ψ = 0 a.e.

 □ 

Theorem 4.3. Let G be a connected and simply connected nilpotent Lie group with 

noncompact center. Suppose that ψ ∈ Cc(G) and that f ∈ L2(G) satisfies 

∥Gψf(x,πξ)∥HS ≤ Cx e−πβ∥ξ∥2, 

where Cx is a positive scalar depending on x. If β > 0, then either f = 0 a.e. or ψ = 0 a.e. 

Proof. For y = (y2,y3,...,yn) ∈ Rn−1, define a function fy : 
R 

→ C such that 
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. 

For z ∈ G, define a function Fz : R → C given by 

 
As ψ ∈ Cc(G), therefore fψ

z has compact support. Moreover, 

 

Therefore, Fz is a continuous function with compact support, say K. 

Choose α > 0 such that αβ > 1. Since the functionattains minima 

on K, therefore  for some r > 0. Also, there exists C1 > 0 such that 

|Fz(x1)| ≤ C1, for all x1 ∈ R. Choose C′ > 0 satisfying rC′ > C1 and therefore for each x ∈ K, we 

obtain 

, 

and for x1 ∈ 
R 

\ K, we have Fz(x1) = 0. Also fψ
z ∈ L1 ∩ L2(G) and 

∥πξ(fψz)∥HS ≤ ∥Gψf(x,πξ)∥HS ≤ Cxe−πβ∥ξ∥2. 

that, for some c > 0. Therefore, Using [18, Lemma 2], we get 

using Hardy’s theorem for the Fourier transform, the function Fz = 0 a.e. Since Fz is integral of 

a positive definite function , therefore (fψ
z)y = 0 a.e. This holds for all z ∈ G, 

which further gives that either f = 0 a.e. or ψ = 0 

a.e. □ 

Corollary 4.4. Let G be a connected and simply connected nilpotent Lie group. Let ψ ∈ Cc(G) 

and f ∈ L2(G) such that 

∥Gψf(x,πξ)∥HS ≤ Ce−π(a∥x∥2+b∥ξ∥2)/2 

for all (x,ξ) ∈ G × W, where a,b, and C are positive real numbers. Then either f = 0 a.e. or ψ = 

0 a.e. 

5. Beurling theorem 

In the next theorem, we prove a result of the Beurling type theorem. 

Theorem 5.1. Let G be a connected and simply connected nilpotent Lie group and let ψ ∈ 

Cc(G) and f ∈ L2(G) be such that 
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 Z ∥Gψf(x,πξ)∥HS eπ(∥x∥2+∥ξ∥2)Pf(ξ) dx dξ < ∞. (5.1) 

 G W 

Then either f= 0 a.e. or ψ = 0 a.e. 

Proof. From (5.1), there exists a zero set M ⊂ G such that for all x ∈ G\M, we have 

 Z ∥Gψf(x,πξ)∥HS eπ(∥x∥2+∥ξ∥2)Pf(ξ) dξ < ∞. (5.2) 

W 

For x ∈ G \ M, we consider the function fψ
x and compute 

|fψx(z)| ∥f\ψx(πξ)∥HS e2π∥z∥∥ξ∥Pf(ξ) dz dξ 

GW 

≤ ZZ |fψx(z)| ∥f\ψx(πξ)∥HS eπ(∥z∥2+∥ξ∥2)Pf(ξ) dz dξ 

 G W 

= Z Z |fψx(z)| ∥Gψf(x,πξ)∥HS eπ(∥z∥2+∥ξ∥2)Pf(ξ) dz dξ 

 G W 

 = Z |fψ
x(z)|eπ∥z∥2dz Z ∥Gψf(x,πξ)∥HS eπ∥ξ∥2Pf(ξ) dξ. (5.3) 

 G W 

Also, 

 

As ψ ∈ Cc(G), so ψ · eπ∥·∥2 ∈ L2(G) and hence RG |fψ
x(z)|eπ∥z∥2dz < ∞. Thus, using (5.2), (5.3), 

and (5.4), we get 

. 

Z 

Z Z 
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Using the Beurling theorem for connected and simply connected nilpotent Lie groups [27], it 

follows that fψ
x = 0 a.e. for all x ∈ G \ M. Hence, by Lemma 4.1, either f = 0 a.e. or ψ = 0 a.e.

 □ 

Using [1, Theorem 3.1], a careful reading of the proof of the above theorem shows the 

following result. 

Theorem 5.2. Let G be an exponential solvable Lie group with a nontrivial center, and let ψ 

∈ Cc(G) and f ∈ L2(G) such that 

, 

where Kξ is a semi-invariant operator [1, 2.6]. Then either f = 0 a.e. or ψ = 0 a.e. 

Remark 5.3. Let G be a connected nilpotent Lie group with a square integrable representation. 

Then as proved in [8, Theorem 5.1], there exist nonzero functions 

f and ψ in L2(G) such that for all x ∈ G and ξ ∈ W
2 , 2 

 ∥ ∥ ≤ −π(a∥x∥ +b∥ξ∥ )/2, 

 Gψf(x,πξ) HS Ce 

where a and b are nonnegative real numbers with ab > 1 and C is a positive constant. Fora,b > 
1, it follows that 

Z ∥Gψf(x,πξ)∥HS eπ(∥x∥2+∥ξ∥2)/2 Pf(ξ) dξ dx < ∞. 

 G W 

Thus, the analogue of Beurling theorem does not hold for G. Several examples of such type of 

group exist including Weyl–Heisenberg group, low-dimensional nilpotent Lie groups G5,1/Z, 

G5,3/Z, and G5,6/Z. More such examples can be obtained using the following result. 

Proposition 5.4. Let G be a group of the form G = A × K × D, where A is a connected nilpotent 

Lie group, K a compact group, and D a type I discrete group. If the Beurling theorem fails for 

A, then it also fails for G. 

Proof. Since the Beurling theorem fails for A, there exist nonzero functions f,ψ ∈ L2(A) such 

that 

Z ∥Gψf(x,πξ)∥HS eπ(∥x∥2+∥ξ∥2)/2Pf(ξ) dx dξ < ∞. 

 A W 

Define functions F,Ψ : G → C by 

 F(x,k,t) = f(x)χe(t) and Ψ(x,k,t) = ψ(x)χe(t), 

Z 

Z 
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where e is the identity element of D. Let {eξ
i },{eδ

i }, and {eγ
i } be orthonormal basis of Hilbert 

spaces corresponding to the representations πξ,δ and γ of A,K, and D, respectively. Then 

 

and δ ≡ I, 

. 

Also, using [19] or survey in [21], D is a bounded dimensional representation group. So, there 

exists a positive scalar M such that dim(γ) ≤ M for all γ ∈ D.b Therefore, we have 

∥GΨF(x,k,e,πξ,I,γ)∥2
HS 

 

Thus, 

HS 

Hence, the Beurling theorem fails for G. □ 

Remark 5.5. Let G be a compactly generated abelian group. Then by the structure theorem 

[16, Theorem 9.8], G is topologically isomorphic with Rn ×Zm ×K for some nonnegative 

integers n,m and some compact abelian group K. Let A be a connected nilpotent Lie group for 

which Beurling’s theorem fails. Then there exist nonzero functions F and Ψ ∈ L2(A × Rn) 

such that either 

 Z Z n Z Z ∥Gψf(x,t,πξ,γu)∥HS eπ(∥x∥2+∥t∥2+∥ξ∥2)dx dt dξ du < ∞ (5.5) 

A R W Rn 

or 

 Z Z n Z Z ∥Gψf(x,t,πξ,γu)∥HS eπ(∥x∥2+∥ξ∥2+∥u∥2)dx dt dξ du < ∞. (5.6) 

A R W Rn 
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Consider the functions F(x,t) = f(x)e−a∥t∥2 and Ψ(x,t) = ψ(x)e−a∥t∥2 for some fixed a ∈ R+ and 

functions f,ψ ∈ L2(A) satisfying nonzero 

Z ∥Gψf(x,πξ)∥HS eπ(∥x∥2+∥ξ∥2)/2Pf(ξ) dx dξ < ∞. 

 A W 

Then, for a > π, functions F and Ψ satisfy (5.5) and for a < π, F and Ψ satisfy (5.6). Thus, by 

Proposition 5.4 and the structure theorem, it follows that if Beurling’s theorem fails for the 

connected nilpotent Lie group A, then the above functions F and Ψ exist on A × G, where G is 
a compactly generated abelian group. 

Next we look at an analogue of Beurling’s theorem for the Fourier transform on abelian 

groups. Let G be a second countable, locally compact, abelian group with into a direct 

productb G = Rn × S, where n ≥ 0 and S contains a compact open dual group G. Using the 

structure theory of abelian groups [16], G decomposes 

subgroup. Hence, the connected component of identity of G is noncompact if and only if n ≥ 

1. Let has a noncompact connected component ofn identity. The dual group∈ G1 

∩is identified with2 n × Gb = Rc × Sb. 

Theorem 5.6. Let f L L (R S) be such that 

 . (5.7) 

Then 

Before proving the above theorem, we shall prove some lemmas. 

Lemma 5.7. Let f ∈ L1 ∩ L2(Rn × K), where K is a compact group satisfying 

ZK Z Zb |f(x,s)| ∥ξ ⊗ γ(f)∥HS e2π|x·ξ| dx dξ ds dγ < ∞. 

 Rn Rn K 

Then f = 0 a.e. 

Proof. For γ ∈ K,b let Hγ γibe the Hilbert space of dimensionγj γ n → dγ with orthonormal basis

. For fixed e and e , define f : R C such that 

Z 

Z 
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fγ(x) = Z f(x,k) ⟨ γ(k)∗eγ
i ,eγ

j ⟩  dk. 

K 

For ξ ∈ Rn, we obtain 

⟨ ξ ⊗ γ(f)ei
γ,eγ

j ⟩  = Z Z f(x,k)e−2πix·ξ ⟨ γ(k)∗eγ
i ,eγ

j ⟩  dx dk 

 Rn K 

 . (5.8) 

Thus, it follows that 

Z |fγ(x)| |f (ξ)|e | · | dx dξ 

 Rn Rn bγ 2π x ξ HS 2π x ξ 

 ≤ ZRn ZRn ZK |f(x,k)| ∥ξ ⊗ γ(f)∥ e | · | dx dk dξ < ∞. 

andHence, using the Beurling theorem forξ ∈ Rn, using (5.8)n, it follows that R⟨ ξn⊗, we 

getγ(f)eγi ,efγγj ⟩ = 01= 0a.e. For fixed2for all 1 ≤ i,jγ≤∈dKγb. 

Since γ ∈ K and ξ ∈ R are arbitrarily fixed and f ∈ L ∩L (G), therefore using 

(2.1), we conclude thatb f = 0n a.e. □ 

Lemma 5.8.n Let1 M = R × H(5.7be an open subgroup of an abelian group), then so does f|M. 

G = R × S. If f ∈ L (G) satisfies 

Proof. Since S/H is compact and S/H is identified with S/H [16, Theorem 24.2], 

we have d dd 

0 

Z 
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Thus,  

Therefore, 

 

Rn
ZZ×Hnn ZHHRn

ZZ
×Hbnn 

Z|fbHb|MZS/H(dMx,h)| |Mfb|MZ(S/Hξ,χd )bb|2eπ2xπ|ξx·ξ| dx dh dξ dχ2π x2ξπ x ξ 

 = R × R ×H 
|f| (x,h)| | f(ξ,χη) dη| e | · | dx dh dξ dχ 

 ≤ 
R × R |f| (x,h)| |f(ξ,χη)| e | · | dx dh dξ dχ dη 

 ≤ ZRn×S ZRn×Sb|f(x,h)| |fb(ξ,χη)| e | · | dx dh dξ dχ < ∞. □ 

Using Lemmas 5.7 and 5.8, we now prove Theorem 5.6. 

Proof of Theorem 5.6. Let s ∈ S be arbitrary. Iffs, whereff∈s(x,tL1) =∩ L2f((Gx,st) satisfies 

the). Since S condition of Theorem 5.6, then so does has a compact open subgroup K, 

therefore using Lemmas 5.7 and 5.8, we get fs|Rn×K = 0 a.e. Thus, we get f = 0 a.e. □ 

 For z ∈ G and ω ∈ Gb, we define thez translation operator1 Tz on L2(G) as 

(T f)(y) = f(z− y) 

and the modulation operator Mω on L2(G) as 

(Mωf)(y) = f(y) ω(y), 

where f ∈ L2(G) and y ∈ G. For f,ψ ∈ L2(G), the following property of the Gabor transform can 

be easily verified: 

Z 
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Gψ(MωTzf)(x,γ) = (ω−1γ)(z−1) Gψf(z−1x,ω−1γ) (5.9) for all x,z ∈ G and γ,ω ∈ G.b 

In the next result, we give a Beurling theorem version for the Gabor transform on abelian 

groups by reducing it to the Fourier transform case. 

Theorem 5.9. Let f ∈ L2(G) and let ψ be a window 

function such that 

Z Z Z |Gψf(x,s,ξ,σ)| eπ(∥x∥2+∥ξ∥2)/2 dx ds dξ dσ < ∞. 

Rn 

Then eithera.e. 

Proof. For, define 

x,k,ξ,γ) 

× Gψ(Mζ,χTz,tf)(−x,k−1,−ξ,γ−1). 

The function F(z,t,ζ,χ) is continuous and is in . Moreover, 

using [8, Lemma 3.2], we have 

 −. (5.10) 

Using (5.9), F(z,t,ζ,χ)(x,k,ξ,γ) can be written as 

F(z,t,ζ,χ)(x,k,ξ,γ) 

= e2πiξx γ(k) e−2πi(ξ−ζ)z (χ−1γ)(t−1) Gψf(x − z,t−1k,ξ − ζ,χ−1γ) 

 

× e−2πi(−ξ−ζ)z (χ−1γ−1)(t−1) Gψf(−x − z,t−1k−1,−ξ − ζ,χ−1γ−1). (5.11) 

Applying (5.10) and (5.11), we have 

 

Z 
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where H(x,s,ξ,σ) = |Gψf(x,s,ξ,σ)|eπ(∥x∥2+∥ξ∥2)/2. Thus, using Theorem 5.6, it follows that F(z,t,ζ,χ) ≡ 

0 for all (z,t,ζ,χ). Since, 

F(−z,t−1,−ζ,χ−1)(0,e,0,I) = e4πiζz χ(t)2 (Gψf(z,t,ζ,χ))2, 

therefore, Gψf ≡ 0, which using (2.3) implies that either f = 0 a.e. or ψ = 0 a.e. □ 

We shall next prove an analogue of Beurling’s theorem for the Gabor transform for the 

groups of the form Rn × K, when K is a compact group. 

Theorem 5.10. Let f,ψ ∈ L2(Rn × K), where K is a compact group such that 

Z Z X ∥Gψf(x,k,ξ,γ)∥HS eπ(∥x∥2+∥ξ∥2)/2 dx dk dξ < ∞. 

Rn K Rn 

Then either  a.e. 

Proof. Assume that ψ = 0̸ . For ω,γ ∈ Kb, let Hω and Hγ be the Hilbert spaces of dimensions dω 

and dγ with orthonormal bases  and , respectively. 

For fixed eγ,eγ, we define τ : Rn → C by r s 

τ(x) = Z ψ(x,k) ⟨ γ(k)∗eγ
r,eγ

s⟩  dk. 

K 

Hölder’s inequality, it follows that τ ∈ L2(Rn). Fix γ ∈ K for which Using the 

τ = 0 ̸ . For σ ∈ K, we can write b 

dγ 

Z 

b 
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γ(k)eγr = XCj,rk eγj 

j=1 

and γ ⊗ σ = X mδ δ, (5.12) 

δ∈Kσ 

where Kσ is a finite subset of K and Cj,r
k ’s and mδ’s are scalars (see [16]). For 

fixed , we define g : Rnb→ C such that 

Clearly, g ∈ L2(Rn). Consider a function φ : Rn × K 
→ C defined by 

φ(x,k) = ψ(x,k) ⟨ γ(k)∗er
γ,eγ

s⟩ . 

Then φ ∈ L2(Rn × K) and Gφf(x,k,ξ,σ) is a Hilbert–Schmidt operator for alln ∈ 

and for almost all (ξ,σ) ∈ Rc × Kb. 

For σ K and fixed , using [8], we have 

dγ 

⟨ Gφf(x,k,ξ,σ)el
σ,eσ

m⟩  = X δX Cj,r
k mδ ⟨ Gψf(x,k,ξ,δ)eδ

l,j,eδ
m,s⟩ . 

 j=1 ∈Kσ 

Let Mσ = max{|mδ| : δ ∈ Kσ}. As |Kσ| ≤ dγdσ < ∞, we have Mσ < ∞. Using 

the Cauchy–Schwarz inequality, we have 

 

HS 
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. 

Hence, it follows that 

 , (5.13) 

where Cσ,γ = dσ Mσ |Kσ| dγ is a constant depending on σ and γ. Now for every 

σ ∈ Kb, using (5.13), we obtain π( 
2+ ξ 2)/2 

 ZK Z ∥Gφf(x,k,ξ,σ)∥HS e ∥x∥ ∥ ∥ dx dk dξ 

RnRn 

≤ Cσ,γZK Z X ∥Gψf(x,k,ξ,δ)∥HS eπ(∥x∥2+∥ξ∥2)/2 dx dk dξ < ∞. (5.14) 

 Rn Rn 
δ∈Kσ 

For x,ξ ∈ Rn, the function Gτg is given by 

 

Thus, 

Gτg(x,ξ)| ≤ Z ∥Gφf(x,k,ξ,ω)∥HS dk. 

K 

On using (5.14), it follows 

Z |Gτg(x,ξ)|eπ(∥x∥2+∥ξ∥2)/2 dx dξ 

Rn Rn 

≤ Z n Z n Z ∥Gφf(x,k,ξ,ω)∥HS eπ(∥x∥2+∥ξ∥2)/2 dx dξ dk < ∞. 

R R K 

| 

Z 

Z 

Z 
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Then by the Beurling theorem for the Gabor transform on  ]) or Theorem 5.9 

above, we conclude that g = 0 a.e. Since ω ∈ K is arbitrary, we get f = 0 a.e. □ 

Remark 5.11. Using Theorem 5.2, the above theorem can be proved for the group G×K, where 

G is an exponential solvable Lie group with a nontrivial center and K is a compact group in 

the following setting: 

Let f ∈ L2(G × K) and ψ ∈ Cc(G × K) such that 

. 

Then either  a.e. 
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