THE TOTAL EDGE FIXING EDGE-TO-EDGE GEODETIC NUMBER OF A GRAPH

L.Merlin Sheela, Research Scholar, Register number: 18233232092003, Department of Mathematics, St. Jude's College, Thoothoor – 629 165, Tamil Nadu, India ¹sheelagodwin@gmail.com

M. Antony, Department of Mathematics, St. Jude's College, Thoothoor – 629 165, Tamil Nadu, India, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012

ABSTRACT— In this article, we introduce the concept of the total edge fixing edge-to-edge geodetic number $g_{tefee}(G)$ for an edge *e*of a graph *G*. The total edge fixing edge-to-edge geodetic *number* of certain classes of graphs including path, cycles, trees, complete graphs are studied. Also it is shown that for every pair of positive integers with $2 \le a \le b$, there exists a graph *G* such that $g_{tee}(G) = a$ and $g_{tefee}(G) = b$, for some edge $e \in E(G)$.

Keywords—total edge fixing edge-to-edge geodetic number,total edge-to-edge geodetic number, edge-to-edge geodetic number, distance ,edge-to-edge distance

I.INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The *order* and *size* of *G* are denoted by *p* and *q* respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1].

The following theorems are used in sequel.

Theorem 1.1. [1] If v is an extreme vertex of a connected graph G, then every edge-to-edge geodetic set contains at least one extreme edge is incident with v.

Theorem 1.2. [1] For any non-trivial tree T with kend vertices, $g_{ee}(T) = k$.

II THE TOTAL EDGE FIXING EDGE-TO-EDGE GEODETIC

Definition: 2.1. Let *e*be an edge of a graph *G*. A set $M(e) \subseteq E(G) - \{e\}$ is called a *total edge fixing edge-to-edge geodetic set* of *e* of a graph *G*, if the sub graph induced by M(e), G[M(e)] has no isolated edges. The minimum cardinality of a total edge fixing edge-to-edge geodetic set is called *total edge fixing edge-to-edge geodetic number* of *G* and is denoted by $g_{tefee}(G)$. Any total edge fixing edge-toedge geodetic set of cardinality $g_{tefee}(G)$ is ag_{tefee} -set of *G*.

Example: 2.2. For the graph*G* given in Figure 2.1, the total edge fixing edge-to-edge geodetic sets of

Research Paper

each edge of G is given in the following Table I

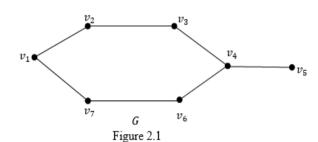


Table:	I

Fixing Edge (e)	Minimum total edge fixing edge-to-edge geodetic sets (M(e))	g _{tefee} (G)
$v_1 v_2$	$\{v_4v_5, v_4v_6\}$	2
$v_2 v_3$	$\{v_4v_5, v_4v_6, v_6v_7\}$	3
$v_{3}v_{4}$	$ \{ v_1 v_2, v_1 v_7, v_4 v_6, v_4 v_5 \}, \\ \{ v_1 v_7, v_6 v_7, v_4 v_6, v_4 v_5 \}, \\ \{ v_1 v_2, v_2 v_3, v_3 v_4, v_4 v_5 \}, \\ \{ v_1 v_2, v_1 v_7, v_3 v_4, v_4 v_5 \} $	4
$v_{4}v_{5}$	$\{v_1v_2, v_1v_7\}$	2
$v_1 v_7$	$\{v_3v_4, v_4v_5\}$	2
$v_{6}v_{7}$	$\{v_2v_3, v_3v_4, v_4v_5\}$	3
v ₄ v ₆	$\{v_1v_2, v_1v_7, v_3v_4, v_4v_5\},\$ $\{v_1v_2, v_2v_3, v_3v_4, v_4v_5\},\$ $\{v_1v_2, v_1v_7, v_4v_6, v_4v_5\},\$ $\{v_1v_7, v_6v_7, v_4v_6, v_4v_5\},\$	4

Theorem: 2.3. For the graph $G = C_p (p \ge 4)$, $g_{tefee}(G) = 2$, for any edge *e* of E(G).

Proof: Let $C_p: v_1, v_2, v_3, ..., v_p$ be the cycle and *e* be an edge of C_p . We have the following two cases. **Case(i).**Let *p* be even. Let *f* be the antipodal edge of *e* of *G* and *h* be any edge adjacent to *f*. Then $\{f, h\}$ is a total edge fixing edge-to-edge geodetic set of *e* of *G* so that $g_{tefee}(G) = 2$.

Case(ii).Let *p* beodd. Let *g* and *f* be the antipodal edges of *e* of *G*. Then $\{g, f\}$ is a total edge fixing edge-to-edge geodetic set of *e* of *G* so that $g_{tefee}(G) = 2$.

Theorem: 2.4. For the complete graph $G = K_p (p \ge 4)$ with vertex set $\{v_1, v_2, v_3, \dots, v_p\}, g_{tefee}(K_p) = p - 1$ for any edge $e \in \{v_1v_2, v_2v_3, \dots, v_{p-1}v_p\}$.

Research Paper

Proof: Let *e* be an edge of K_p . Without loss of generality, let $e = v_1v_2$. **Case**(*i*)p = 4. Then $S = \{v_2v_3, v_4v_5\}$ is a g_{tefee} -set of *G* so that $g_{tefee}(G) = 2$. **Case**(*ii*) $p \ge 5$. Then $S_1 = \{v_3v_4, v_4v_5, ..., v_{p-1}v_p\}$ is a g_{tefee} -set of *G* so that $g_{tefee}(G) \le p - 3$. We prove that $g_{tefee}(G) = p - 3$. On the contrary suppose that $g_{tefee}(G) \le p - 4$. Then there exists a g_{tefee} -set *S'* of *e* of *G* such that $|S'| \le p - 4$. Since G[S'] is a path, there exists $f \in E(G)$ such that *f* do not lie on a geodesic joining a pair of edges of *S'*, which is a contradiction. Therefore $g_{tefee}(G) = p - 3$.

Theorem: 2.5. For the complete bipartite graph $= K_{m,n}(2 \le m \le n), g_{tefee}(K_p) = n + m - 2$, for any edge *e of E(G)*.

Proof: Let $U = \{u_1, u_2, ..., u_m\}$ and $V = \{v_1, v_2, ..., u_m\}$

 v_n } be a bipartition of G. Let us fix the edge $e = u_1v_1$ in G. Let $S = \{u_2v_2, u_3v_3, \dots, u_mv_m, u_mv_{m+1}, \dots, u_m, v_n, v_1u_2, \dots, u_mv_m, u_mv_m, u_mv_{m+1}, \dots, u_m, v_n, v_1u_2, \dots, u_mv_m, u_m$

 $v_2u_3, ..., v_{m-1}u_m$ }. Clearly *S* is a total edge fixing edge-to-edge geodetic set of $e = u_1v_1$ of *G* so that $g_{tefee}(G) \le n + m - 2$. On the other hand, let $g_{tefee}(G) \le n + m - 3$. Then the total edge fixing edge-to-edge geodetic set *S'* of the edge *e* exits such that $|S'| \le n + m - 3$. Consequently there is an edge, say $e \in S$ such that $e \notin S'$ and *e* is not incident with any vertex set of V(S'). Therefore *e* does not lie on a geodesic joining a pair of edges of *S'*. Hence *S'* is not a total edge fixing edge-to-edge geodetic set of *G*, which is a contradiction. Hence $g_{tefee}(K_p) = n + m - 2$.

III. CONCLUSION

With the contribution of the total edge fixing edge-to-edge geodetic number of a graph, we can introduce the forcing total edge fixing edge-to-edge geodetic number $f_{g_{tefee}}(G)$ of an edge e of G. The forcing total edge fixing edge-to-edge geodetic *number* of certain graphs can be studied.

REFERENCES

[1] Abdollahzadeh Ahangar, Vladimir Samodivikin, The Total Geodetic Number of a Graph, Utilita's Mathematica 100, (2016), 253-268.

[2] M. Antony and A.L. Merlin Sheela, The Edge-to-Edge Geodetic Number of a Graph, JASC: Journal of Applied Science and Computations, VolumeVI, Issue V, (2019), 1954-1962.

[3]F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.

- [4]G. Chartrand and P. Zhang, The forcing geodetic number of a graph, *Discuss. Math. Graph Theory*, 19 (1999), 45-58.
- [5] G.Chartrand, F. Harary and P. Zhang, Geodetic Sets in Graphs, *DiscussionesMathematicae Graph Theory*, 20(2000),129 138.
- [6]G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39 (2002), 1-6.