THE TOTAL EDGE FIXING EDGE-TO-EDGE GEODETIC NUMBER OF A GRAPH
 L.Merlin Sheela, Research Scholar, Register number: 18233232092003, Department of
 Mathematics, St. Jude's College, Thoothoor - 629 165, Tamil Nadu, India
 ${ }^{1}$ sheelagodwin@gmail.com
 M. Antony, Department of Mathematics, St. Jude's College, Thoothoor - 629 165, Tamil Nadu, India, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012

Abstract

In this article, we introduce the concept of the total edge fixing edge-to-edge geodetic number $g_{\text {tefee }}(G)$ for an edge eof a graph G. The total edge fixing edge-to-edge geodetic number of certain classes of graphs including path, cycles, trees, complete graphs are studied. Also it is shown that for every pair of positive integers with $2 \leq a \leq b$, there exists a graph G such that $g_{\text {tee }}(G)=a$ and $g_{\text {tefee }}(G)=b$,for some edge $e \in E(G)$.

Keywords-total edge fixing edge-to-edge geodetic number,total edge-to-edge geodetic number, edge-to-edge geodetic number, distance ,edge-to-edge distance

I.INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1].

The following theorems are used in sequel.
Theorem 1.1. [1] If v is an extreme vertex of a connected graph G, then every edge-to-edge geodetic set contains at least one extreme edge is incident with v.
Theorem 1.2. [1] For any non-trivial tree T with k end vertices, $g_{e e}(T)=k$.

II THE TOTAL EDGE FIXING EDGE-TO-EDGE GEODETIC

Definition: 2.1. Let e be an edge of a graph G. A set $M(e) \subseteq E(G)-\{e\}$ is called a total edge fixing edge-to-edge geodetic set of e of a graph G, if the sub graph induced by $M(e), G[M(e)]$ has no isolated edges. The minimum cardinality of a total edge fixing edge-to-edge geodetic set is called total edge fixing edge-to-edge geodetic number of G and is denoted by $g_{\text {tefee }}(G)$. Any total edge fixing edge-toedge geodetic set of cardinality $g_{\text {tefee }}(G)$ is a $g_{\text {tefee }}$-set of G.

Example: 2.2. For the graph G given in Figure 2.1, the total edge fixing edge-to-edge geodetic sets of
each edge of G is given in the following Table I

Figure 2.1

Table: I

Fixing Edge (e)	Minimum total edge fixing edge-to-edge geodetic sets (M(e))	$g_{\text {tefee }}(G)$
$v_{1} v_{2}$	$\left\{v_{4} v_{5}, v_{4} v_{6}\right\}$	2
$v_{2} v_{3}$	$\left\{v_{4} v_{5}, v_{4} v_{6}, v_{6} v_{7}\right\}$	3
$v_{3} v_{4}$	$\begin{aligned} & \left\{v_{1} v_{2}, v_{1} v_{7}, v_{4} v_{6}, v_{4} v_{5}\right\} \\ & \left\{v_{1} v_{7}, v_{6} v_{7}, v_{4} v_{6}, v_{4} v_{5}\right\} \\ & \left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}\right\} \\ & \left\{v_{1} v_{2}, v_{1} v_{7}, v_{3} v_{4}, v_{4} v_{5}\right\} \end{aligned}$	4
$v_{4} v_{5}$	$\left\{v_{1} v_{2}, v_{1} v_{7}\right\}$	2
$v_{1} v_{7}$	$\left\{v_{3} v_{4}, v_{4} v_{5}\right\}$	2
$v_{6} v_{7}$	$\left\{v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}\right\}$	3
$v_{4} v_{6}$	$\begin{aligned} & \left\{v_{1} v_{2}, v_{1} v_{7}, v_{3} v_{4}, v_{4} v_{5}\right\} \\ & \left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}\right\} \\ & \left\{v_{1} v_{2}, v_{1} v_{7}, v_{4} v_{6}, v_{4} v_{5}\right\} \\ & \left\{v_{1} v_{7}, v_{6} v_{7}, v_{4} v_{6}, v_{4} v_{5}\right\} \end{aligned}$	4

Theorem: 2.3. For the graph $G=C_{p}(p \geq 4), g_{\text {tefee }}(G)=2$, for any edge e of $E(G)$.
Proof: Let $C_{p}: v_{1}, v_{2}, v_{3}, \ldots, v_{p}$ be the cycle andebe an edge of C_{p}. We have the following two cases.
Case(i).Letpbe even. Let f be the antipodal edge of e of G and h be any edge adjacent to f.Then $\{f, h\}$ is a total edge fixing edge-to-edge geodetic set of e of G so that $g_{\text {tefee }}(G)=2$.

Case(ii).Letpbeodd. Let g and f be the antipodal edges of e of G.Then $\{g, f\}$ is a total edge fixing edge-to-edge geodetic set of e of G so that $g_{\text {tefee }}(G)=2$.
Theorem: 2.4. For the complete graph $G=K_{p}(p \geq 4)$ with vertex set $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}, g_{\text {tefee }}\left(K_{p}\right)=p-1$ for any edge $e \in\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{p-1} v_{p}\right\}$.

Proof: Let e be an edge of K_{p}. Without loss of generality, let $e=v_{1} v_{2}$.
$\operatorname{Case}(\boldsymbol{i}) p=4$. Then $S=\left\{v_{2} v_{3}, v_{4} v_{5}\right\}$ is a $g_{\text {tefee }}$-set of G so that $g_{\text {tefee }}(G)=2$.
$\operatorname{Case}(\boldsymbol{i i}) p \geq 5$. Then $S_{1}=\left\{v_{3} v_{4}, v_{4} v_{5}, \ldots, v_{p-1} v_{p}\right\}$ is a $g_{\text {tefee }}$-set of G so that $g_{\text {tefee }}(G) \leq$ $p-3$. We prove that $g_{\text {tefee }}(G)=p-3$. On the contrary suppose that $g_{\text {tefee }}(G) \leq p-4$. Then there exists a $g_{\text {tefee }}$-set S^{\prime} of e of G such that $\left|S^{\prime}\right| \leq p-4$. Since $G\left[S^{\prime}\right]$ is a path, there exists $f \in E(G)$ such that f do not lie on a geodesic joining a pair of edges of S^{\prime}, which is a contradiction. Therefore $g_{\text {tefee }}(G)=p-3$.
Theorem: 2.5. For the complete bipartite graph $=K_{m, n}(2 \leq m \leq n), g_{\text {tefee }}\left(K_{p}\right)=n+m-2$, for any edge e of $E(G)$.
Proof: Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots\right.$,
$\left.v_{n}\right\}$ be a bipartition of G. Let us fix the edge $e=u_{1} v_{1}$ in G. Let $S=$ $\left\{u_{2} v_{2}, u_{3} v_{3}, \ldots, u_{m} v_{m}, u_{m} v_{m+1}, \ldots, u_{m}, v_{n}, v_{1} u_{2}\right.$,
$\left.v_{2} u_{3}, \ldots, v_{m-1} u_{m}\right\}$. Clearly S is a total edge fixing edge-to-edge geodetic set of $e=u_{1} v_{1}$ of G so that $g_{\text {tefee }}(G) \leq n+m-2$. On the other hand, let $g_{\text {tefee }}(G) \leq n+m-3$.Then the total edge fixing edge-to-edge geodetic set S^{\prime} of the edge e exits such that $\left|S^{\prime}\right| \leq n+m-3$.Consequently there is an edge, say $e \in S$ such that $e \notin S^{\prime}$ and e is not incident with any vertex set of $V\left(S^{\prime}\right)$. Therefore e does not lie on a geodesic joining a pair of edges of S^{\prime}. Hence S^{\prime} is not a total edge fixing edge-to-edge geodetic set of G, which is a contradiction. Hence $g_{\text {tefee }}\left(K_{p}\right)=n+m-2$.

III. CONCLUSION

With the contribution of the total edge fixing edge-to-edge geodetic number of a graph, we can introduce the forcing total edge fixing edge-to-edge geodetic number $f_{g_{\text {tefee }}}(G)$ of an edge e of G.The forcing total edge fixing edge-to-edge geodetic number of certain graphs can be studied.

REFERENCES

[1] Abdollahzadeh Ahangar, Vladimir Samodivikin, The Total Geodetic Number of a Graph, Utilita's Mathematica 100, (2016), 253-268.
[2] M. Antony and A.L. Merlin Sheela, The Edge-to-Edge Geodetic Number of a Graph, JASC: Journal of Applied Science and Computations, VolumeVI, Issue V, (2019), 1954-1962.
[3]F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[4]G. Chartrand and P. Zhang,The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19 (1999), 45-58.
[5] G.Chartrand, F. Harary and P. Zhang, Geodetic Sets in Graphs, DiscussionesMathematicae Graph Theory ,20(2000),129-138.
[6]G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks,39 (2002), 1-6.

