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Abstract 

A combination of measurements and modeling is often used when dealing with engineering 

problems. When taking measurements, engineers design and set up laboratory equipment to 

produce data which are collected and analyzed. When modeling, engineers work to 

understand the theories and principles underlying the physical phenomena, and write or use 

computer programs to perform virtual experiments as an aid to ensure that results from the 

physical experiments are reasonable. Mathematical models for engineering applications, 

such as in the areas of finite elasticity and inverse kinematics, are often expressed in terms 

of systems of nonlinear equations which are difficult to solve. There is a problem with 

uniqueness and existence because a nonlinear system can have multiple solutions or no 

solution at all. When engineers are conducting numerical research, they either write their 

own programs or use available computer packages to solve nonlinear systems. Numerical 

analysis is at the core of both methods, and is directed towards developing and improving 

the mathematical algorithms required to perform the associated calculations. 
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Introduction 

Motivation for Research – Challenges in Solving Nonlinear Equations 

 

The mathematical methods for solving engineering problems can be divided into two main 

categories: (1) linear and (2) nonlinear systems. The term “systems of equations” might 

refer to ordinary differential equations (ODEs), partial differential equations (PDEs), 

integral equations, and/or algebraic equations. In this thesis, the mathematics of 

nonlinear algebraic equations arising in engineering applications were investigated. To 

give a definition for nonlinear algebraic equations, the definition of linear operator must 

first be reviewed. 

Numerical Methods 

Numerical methods, and in particular iterative methods, are used to determine the solution 

to nonlinear systems arising in engineering applications since there is usually no analytical 

solution available. Issues with current numerical techniques include the rate of convergence 

and the uniqueness of the solution. Throughout the centuries, mathematicians and scientists 

have been using the well-known Newton’s method (NR), an iterative technique to 

determine the solution to nonlinear equations. There exist other numerical schemes to 

determine the roots of nonlinear systems, such as modified versions of the Newton’s 

method (MNR) and Newton-Homotopy continuation methods, but the NR method is by far 

the popular choice among academics and industries due to its rapid rate of convergence. 

The algorithm, however, depends on the initial guess, and neither stability nor convergence 

is guaranteed. 

The iterative methods that were investigated in this research included the Newton’s method 

(NR), J.H. He’s modified Newton-Raphson method (HMNR) [4], a Newton-Homotopy 

continuation method by Wu [5] (to be referred to as “Homotopy” in this thesis), and the 

new method proposed here – a modified Newton’s method combined with the Vector 

Epsilon Algorithm (MNR-VEA). The engineering application considered in this thesis is the 

inverse kinematics of robot arms. A review of the literature showed that NR is the method 

normally used for inverse kinematic calculations (e.g., [6, 7]), and, occasionally, Homotopy 

is also used (e.g., [8]). This has provided the rationale for the choice of iterative methods 

considered in this thesis. 

Iterative Methods 
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In this section, the techniques for solving nonlinear equations, the Vector Epsilon Algorithm 

(VEA) and some inverse kinematics applications are discussed. Notation for system of 

nonlinear equations in here is F x   0 . Numerous numerical methods are based on the 

Newton’s method, and some of them will be reviewed in upcoming sections. The book by 

Kelley [11], Solving nonlinear equations with Newton’s method, is an introductory textbook 

for academics who are working on numerical analysis. Some of the algorithms are written 

in pseudocode and MATLAB® [12] code for users to experiment with a Newton iteration. 

Inverse Kinematics Problems  

Kinematics describes the motion of bodies within a system without consideration of the 

forces causing the motion. Hence, kinematics is the study of motion based on geometry and 

changes in geometry. The motion of each body is modelled through mathematical formulas 

for calculating position, velocity, and acceleration. The area of kinematics can be divided 

into forward and inverse problems. When positions are the primary consideration for a 

mechanism, forward kinematics is a straightforward process: given a set of joint angles and 

link parameters defining a configuration, the aim is to find the position of an end-effector. 

The inverse problem is the reverse of the forward kinematic process: given the end-effector 

position, find the joint angles and link parameters to achieve that position [36]. In this 

thesis, the focus will be on inverse 

kinematics which, as will be shown, is highly nonlinear and therefore is the more 

challenging problem. 

In the literature, there are several techniques used to perform inverse kinematics. A problem 

of particular interest is the inverse kinematics of robot manipulators, and different iterative 

methods have been used to solve the corresponding nonlinear equations. Cai et al. [37] and 

Lenarcic [38] solved nonlinear kinematic equations using iterative algorithm based on the 

conjugate gradient method. This method [39] solves systems of linear equations in the form 

of Ax  b where A is a symmetric and positive-definite matrix. It is equivalent to finding 

the minimum of quadratic form 

F( x)  
1 

x T A x  x Tb , (2.22) 

F' ( x)  A x  b . (2.23) 
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The minimum of F( x) is a solution to Axb . Caccavale and Wroblewski [40] compared the 

effectiveness and robustness of Newton-Raphson and Jacobian transpose methods, where 

they used the transpose instead of the inverse of a Jacobian [41], for determining the roots 

of nonlinear kinematic equations. Tagawa and Haneda [42] developed a computer program 

to implement a fast interval bisection (FIB) algorithm based on interval analysis. It reduced 

the number of operations and storage space of variables. Cai and Zhang [43] programmed a 

solver based on the gradient descent method in neural networks, and Martin el al. [44] used 

the gradient descent method to solve the inverse kinematics of multi-link robots by means 

of neuro- controllers. Chu and Wu [45] showed that a modified secant method has a better 

performance, assessed via several numerical examples, than the Newton’s method. Ren et 

al. [46] used the cyclic coordinates descent (CCD) algorithm to perform inverse kinematics 

for virtual human approximate solution of the equation 

F ' xn sn    F xn  

Applications with Vector Epsilon Algorithm 

The Vector Epsilon Algorithm (VEA) is an efficient method in accelerating the 

convergence of vector sequences [26]. Later on, Gekeler [27] showed that the VEA 

was able to accelerate 

convergence when solving non-singular systems of linear and non-linear equations. As for 

using the VEA to accelerate convergence when solving singular systems, Brezinski [28] and 

Sidi [29] showed success in systems of linear equations, and Brezinski [30] for systems of 

non-linear equations. Brezinski and Redivo-Zaglia [31] released a MATLAB toolbox 

named EPSfun that included codes for Scalar Epsilon Algorithm (SEA) and VEA. 

Waldvogel [32] used the VEA for exploration of data to lessen the computation time with 

their own MATLAB code. The algorithm has been applied to engineering applications, 

such as in fluid dynamics applications, with Hafez and Cheng [33] and Hafez et al. [34] 

using the SEA to reduce solving time in transonic flow calculations; Cheung [35] used the 

VEA to reduce solving time in viscous and inviscid hypersonic flow calculations. The 

algorithm has also been applied to kinematic problems, which is the focus of this thesis. 

NR is commonly used when an iterative method is needed to solve certain problems. The 

reason for its popularity is due to its fast convergence. Wu’s version of Homotopy is similar 

to NR in some ways, in that it provides better performance since it is independent of initial 
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guesses and always converges. HMNR is an altered form of NR, and it operates like NR 

except there is a parameter which controls the iterative process. The proposed method in 

this thesis, MNR-VEA, combines a modified version of Newton’s method with a type of 

convergence accelerator, the Vector Epsilon Algorithm. Numerical analysis was performed 

for the investigation of the above iterative techniques.   One of the primary issues that will 

form the basis for comparison is the need for finding all the roots of a system of nonlinear 

equations. For example, for the application of a robot manipulator, this would correspond 

to finding all the configurations that would achieve a specified position of the end effector. 

The “best” configuration could then be chosen based on some optimization criterion. As 

will be seen, this is a particular challenge for any iterative method, and depends on the 

technique’s ability to find the closest root to a given initial guess. 

The Issue of Closest Root 

Numerical methods are used to solve equations involving trigonometry functions, such as 

load flow analysis [51, 52] and inverse kinematics [53, 54].   There is a need to find the 

closest solution from the given initial guess of nonlinear equations. For Chemical 

Engineering applications, finding the closest solution is essential in the synthesis, design 

and control of chemical processes [55, 56] and useful roots can be selected [57]. For 

Electrical Engineering applications, finding the closest solution is crucial to computer-aided 

design of integrated circuits since they are the operating points [58-61]. 

In order to find solutions within a certain domain systematically, a common approach is to 

form a grid of points which are used as a series of initial guesses. For each initial guess, the 

goal is to use the iterative method to find the root closest to that initial guess. If the iterative 

method does not give the closest root relative to the initial guess, the process is no longer 

systematic, and it cannot be concluded that all the roots have been found. For example, the 

classical numerical method NR is dictated by the initial guess used in the iterative process.  

This method fails when a singularity occurs and is highly unstable near a singularity. It 

could result in a root distant from the initial guess that may even be outside the defined 

domain. Due to this, in the literature there are numerous versions of MNR which try to 

eliminate unfavourable qualities from the original recipe. 

To illustrate the meaning of closest root, consider Figure 2.1 and Figure 2.2. Both figures 

are 

f (x, y)  0                        (2.31) 
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g(x, y)  0 

of two nonlinear equations in two unknowns. A two degree of freedom (2-DOF) system is 

considered for this illustration, since it is easier to visualize the numerical approach for two 

variables as compared to the difficulty in drawing a function of three or more variables. 

Figure 2.1 demonstrates that, depending on the iterative method, an initial guess may not 

give the closest root, and in fact the root finding process may become random. Figure 2.2 

demonstrates a case where all initial guesses are able to converge to the closest root. Here, 

by definition, the closest root occurs when the Euclidean distance between the initial guess 

and the solution is the smallest. In the sections to follow, each iterative method to be 

considered in this thesis is presented and, later in the thesis, each method was evaluated in 

terms of its ability to find the closest root for an initial guess. 

 

 

 

 A case where initial guesses do not all converge to the closest root. 
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 A case where all initial guesses converge to the closest root. 

Conclusion 

In this study various numerical methods and test cases were evaluated to solve systems of 

non- linear equations. 

For the 1 DOF test case, MNR-VEA (with  of 0.0001) and Homotopy did not fail to 

converge. Also, success with Homotopy in the root-finding process was independent of the 

value of t; though, Homotopy did require many more iterations to find a solution (5 to 20 

times more iterations than MNR-VEA). NR, HMNR and some cases of MNR-VEA (with 

 values of 0.1, 

0.01 and 0.001) failed to converge on closest root specifically when the initial guesses 

were in the region close to the critical point of 1.5708. 

For the 2 DOF test case, MNR-VEA had a better performance in converging to the closest 

root, and was more consistent in obtaining valid solutions. Homotopy was consistent in 

arriving at the closest root, and more frequently arrived at the closest root as t decreased; 
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though, the number of required iterations was large. HMNR gave the worst performance out 

of the four methods (and even resulted in complex numbers), and the choice of r was crucial 

in HMNR. 

For the 2/1 DOF test case, MNR-VEA has a best performance in achieving x* and x**. 

MNR- VEA. These results, combined with the 1 DOF analysis, indicated that MNR-VEA is 

the best choice when dealing with 1 DOF problems. 

For the 3 DOF test case, Homotopy was consistent in arriving at the closest root, and more 

frequently arrived at the closest root as t decreased. With Homotopy though, as well as 

NR, average  and maximum  were large, indicating solutions outside the domain. 

MNR-VEA with  = 0.1 had its best performance in obtaining valid results converging to 

the closest root, with low average . Though, solutions with  = 0 were minimal. HMNR 

was not able to solve the 3 DOF test case due to division by zero. 

Computation time and percentage of giving closest root were measured to evaluate the 

performance of each numerical method. MNR-VEA is recommended for 1 and 2 DOF, and 

Homotopy ( t = 0.02, 0.01) is recommended for 3 DOF. 

Overall, the results of this analysis indicate different results for MNR-VEA and Homotopy. 

Specifically, MNR-VEA worked best with 1 and 2 DOF test cases (as well as the 2/1 DOF 

test case) whereas Homotopy worked moderately well with 1 and 2 DOF test cases and best 

with the 3 DOF test case. If the goal of the optimization is a mixture of both accuracy and 

minimal number of iterations, and the initial guess is approximately near the closest root, 

MNR-VEA may be more desirable to use for 1 and 2 DOF scenarios. Further, it is  

important to note that Homotopy has two parameters to be chosen: the auxiliary function, 

g(x), and time increment, t. For Homotopy, there are rules to follow in picking g(x) and 

t, and, even so, it does not guarantee convergence. As such, MNR-VEA may be more 

desirable to use since the choice of picking parameter r and relaxation parameter  is more 

intuitive (i.e.,  < 1). 
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