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Abstract 

In this paper, author focuses and explains on a comparative study between Regression and 

Neural Networks with reference to Modeling. Also author reveals about the terminilogy of 

regression modelling Networks.   
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1. Introduction 

Berman, H [1] investigated the effect of drilling process parameters and tool coating on tool 

wear during dry drilling of AA2024 aluminum alloy. Douglas Montgomery et al. [2] also 

conducted experiments regarding tool wear during dry drilling of aluminum alloys. In their 

work, they aimed at the reduction of the built-up layer in the cutting tool by altering the 

process parameters and tool coating and geometry. Wiley et al. [3] conducted a study on chip 

morphology during high speed drilling of Al-Si alloy. Frost, J [4] investigated the use of high-

performance drills during drilling of aluminum and titanium alloys with a view toward 

minimizing cutting force and torque. Iyanaga, S., [5] conducted a thorough comparison 

regarding various categories of coated cutting tools for the drilling process of aluminum. 

Kawada, Y [6] determined the optimum cutting parameters for high surface quality and hole 

accuracy using the Taguchi method. Narakon, S [7] used the Taguchi method and Response 
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Surface Methodology (RSM) to predict burr height during drilling of aluminum alloys and to 

determine the optimum drilling parameters. Sun, S [8], Qiu, K.; Qin, S.; Ge, C.; Chen, M [9], 

and Dasch, J.M et al [10] also employed the Taguchi method to determine the optimum levels 

of the process parameters for the minimization of thrust force and torque during drilling of 

aluminum alloys.  Kurt et al. [11] employed an Artificial Neural Network (ANN) model to 

predict tool wear during drilling of copper workpieces. Kilickap, E. [12] presented an ANN 

model for the prediction of circularity, cylindricity, and surface roughness when drilling 

aluminum-based composites. Sreenivasulu, R.; Rao, C.S [13] also presented MLP and ANFIS 

models for the prediction of hole diameter during drilling of various alloys. Efkolidis et al. 

[14] conducted a comprehensive study in developing an AI-based burr detection system for 

the drilling process of Al7075-T6. Kyratsis, P et al., [15] employed an ANFIS model for the 

prediction of surface roughness in end milling. Singh, A.K et al. [16] used an ANFIS model 

for the estimation of flank wear during milling. Umesh Gowda et al., [17] applied the ANFIS 

model for the selection of drilling parameters in order to reduce burr size and improve surface 

quality. Neto, F.C et al. [18] used an RBF model for surface roughness during machining of 

aluminum alloys. Ferreiro et al. [19] employed an RBF model for the prediction of cutting 

forces during ball-end milling. Lo, S.P [20] conducted a thorough comparison between 

various neural network models such as different variants of MLP, RBF-NN, and ANFIS for 

the cases of electrical discharge machining. Zuperl U et al. [21] conducted a comparison 

between regression and artificial neural network models for CNC turning cases  Azarrang, S 

et al., Fang, N etal., El-Mounayri, H et al., and Tsai, K.M.; Wang, P.J. [22-25] compared 

support vector regression, polynomial regression, and artificial neural networks in the case of 

high-speed turning.  

 2.  The Gamma Exponentiated Distribution 

In the regular utilization of ANOVA, the invalid theory is that all gatherings are just arbitrary 

examples of a similar populace. For instance, when considering the impact of various 

medications on comparative examples of patients, the invalid theory would be that all 

medicines have a similar impact.  
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      ANOVA: NO FIT  

 

ANOVA: FAIR FIT  

 

ANOVA: VERY GOOD FIT  

2.1 Fixed impacts models  

The settled impacts show (class I) of investigation of fluctuation applies to circumstances in 

which the experimenter applies at least one medicines to the subjects of the analysis to see 

whether the reaction variable esteems change.  
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2.2 Random impacts models  

Arbitrary impacts demonstrate (class II) is utilized when the medications are not settled. This 

happens when the different factor levels are tested from a bigger populace.  

2.3 Mixed impacts models  

A blended impacts display (class III) contains exploratory components of both settled and 

arbitrary impacts composes, with suitably unique translations and examination for the two 

sorts.  

2.4 Normal distribution  

The investigation of change can be displayed as far as a direct model, which makes the 

accompanying suppositions about the likelihood circulation of the responses: 

• Freedom of perceptions – this is a presumption of the model that rearranges the 

measurable examination.  

• Ordinariness – the circulations of the residuals are typical.  

• Equity (or "homogeneity") of fluctuations, called homoscedasticity — the difference 

of information in gatherings ought to be the same.  

The different presumptions of the reading material model infer that the blunders are freely, 

indistinguishably, and ordinarily conveyed for settled impacts models, that will be, that the 

mistakes 𝜀 are autonomous and 𝜀 ∼ 𝑁(0, 𝜎2). 

2.5. Randomization-based investigation  

In a randomized controlled analysis, the medicines are arbitrarily alloted to trial units, 

following the trial convention. This randomization is objective and announced before the test 

is completed. The goal arbitrary task is utilized to test the criticalness of the invalid theory, 

following the thoughts of C. S. Peirce and Ronald Fisher.  

2.6 Unit-treatment additivity  

In its least complex frame, the suspicion of unit-treatment additivity states that the watched 

reaction 𝑦𝑖.𝑗 from trial unit i , while accepting treatment 𝑗 can be composed as the aggregate of 

the unit's reaction 𝑦𝑖  and the treatment-impact 𝑡𝑗, that is  

𝑦𝑖.𝑗 = 𝑦𝑖 + 𝑡𝑗  

http://www.ijfans.org/


e-ISSN 2320 –7876 www.ijfans.org 
Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved Research Paper 

 

 

 

 
  
   

1088 
 

The suspicion of unit-treatment additivity infers that, for each treatment𝑗, the 𝑗𝑡ℎ treatment 

has the very same impact 𝑡𝑗 on each test unit.  

3. Outline of Assumptions  

In any case, investigations of procedures that modification fluctuations rather than means that 

(called scattering impacts) are effectively directed utilizing ANOVA. There aren't any 

essential presumptions for ANOVA in its full all inclusive  statement, but the F-test used for 

ANOVA speculation testing has suppositions and affordable impediments that area unit of 

continuing with premium.  

3.1 Logical Reasoning 

ANOVA utilizes standard institutionalized verbiage.  The definitional condition of take a look 

at modification𝑠2 =  
1

𝑛−1
 ∑(𝑦𝑖 −  𝑦̅ )2, wherever the divisor is understood because the 

degrees of flexibility, the summation is understood because the whole of square, the result is 

understood because the mean and therefor the square terms area unit deviations from the 

instance mean. 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 =  𝑆𝑆𝐸𝑟𝑟𝑜𝑟 +  𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠  

The quantity of degrees of flexibility DF can be divided comparably: one of these segments 

(that for mistake) determine a chi-squared dispersion which depicts the related total of 

squares, while the same is valid for "medicines" if there is no treatment impact. 

𝐷𝐹𝑇𝑜𝑡𝑎𝑙 =  𝐷𝐹𝐸𝑟𝑟𝑜𝑟 +  𝐷𝐹𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠  

3.2 Association with Direct Relapse 

In one-way ANOVA  𝐵 = 1 and in two-way ANOVA 𝐵 = 2. Moreover, we accept the 

𝑏𝑡ℎ  factor has 𝐼𝑏 levels. Presently, we can one-hot encode the components into the ∑ 𝐼𝑏𝑏=1  

dimensional vector 𝑣𝑘 

The one-hot encoding capacity 𝑔𝑏: 𝐼𝑏  → {0,1}𝐼𝑏 is characterized with the end goal that the 

ith is 

𝑔𝑏  (𝑍𝑘,𝑏)𝑖 = {
1    𝑖𝑓  𝑖 =  𝑍𝑘,𝑏

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 
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The vector is 𝑣𝑘  the connection of the greater part of the above vectors for all b. In this way, 

𝑣𝑘 =  [𝑔1(𝑍𝑘,1), 𝑔2(𝑍𝑘,2), … … . . 𝑔𝐵(𝑍𝑘,𝐵), ]. To get a completely broad 𝐵-way 

communication ANOVA we should likewise connect each extra association term in the 

vector 𝑣𝑘 and after that include a capture term. Give that vector a chance to be 𝑥𝑘  . 

3.3 Illustration 

On the off chance that we had 6 perceptions for each level, we could compose the result of 

the investigation in a table this way, where 𝑎1, 𝑎2 and 𝑎3 are the three levels of the factor 

being examined. 

 

The invalid theory, indicated H0, for the general F-test for this test would be that every one of 

the three levels of the factor deliver a similar reaction, by and large. To compute the F-

proportion:  

Stage 1: Calculate the mean inside each gathering:  

𝑌1̅ =  
1

6
 ∑ 𝑌1𝑖 =  

6 + 8 + 4 + 5 + 3 + 4

6
 = 5 

𝑌2̅ =  
1

6
 ∑ 𝑌2𝑖 =  

8 + 12 + 9 + 11 + 6 + 8

6
 = 9 

𝑌3̅ =  
1

6
 ∑ 𝑌3𝑖 =  

13 + 9 + 11 + 8 + 7 + 12

6
 = 10 

Stage 2: Calculate the general mean:  

𝑌̅ =  
∑ 𝑌𝐼̅𝐼

𝑎
=  

𝑌1 +  𝑌2 +  𝑌3
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑎
 

=
5 + 9 + 10

3
= 8 
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Where 𝑎 is the quantity of gatherings.  

Stage 3: Calculate the "between-gathering" aggregate of squared contrasts:  

𝑆𝐵 = 𝑛 (𝑌1̅ −  𝑌̅)2 +  𝑛 (𝑌2̅ −  𝑌̅)2 +  𝑛 (𝑌3̅ −  𝑌̅)2      

= 6(5 − 8)2 +  6 (9 − 8)2 +  6(10 − 8)2 = 84 

where 𝑛 is the quantity of information esteems per gathering.  

The between-gather degrees of opportunity is one not as much as the quantity of gatherings  

𝑓𝑏 = 3 − 1 = 2 

so the between-assemble mean square esteem is  

𝑀𝑆𝐵 =
84

2
= 42 

Stage 4: Calculate the "inside gathering" entirety of squares. Start by focusing the 

information in each gathering  

 

The inside gathering entirety of squares is the total of squares of every one of the 18 esteems 

in this table.  

                     𝑆𝑊 =  (1)2 +  (3)2 + (−1)2 + (0)2 + (−2)2 +  (−1)2 +  (−1)2 +  (3)2 + (0)2

+   (2)2 +  (−3)2 +  (−1)2 +   (3)2 +  (−1)2 + (1)2 +  (−2)2 + (−3)2

+ (2)2  = 68   

The inside gathering degrees of opportunity is  

𝑓𝑤 = 𝑎(𝑛 − 1) = 3(6 − 1) = 15 

In this manner the inside gathering mean square esteem is  
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𝑀𝑆𝑊 =  
𝑆𝑊

𝑓𝑤
=

68

15
 ≈ 4.5 

Stage 5: The F-proportion is  

𝐹 =  
𝑀𝑆𝐵

𝑀𝑆𝑊
≈

42

4.5
 ≈ 4.5 

The basic esteem is the number that the test measurement must surpass to dismiss the test. For 

this situation, 𝐹crit (2,15)  =  3.68 𝑎𝑡 𝛼 =  0.05. 𝑆𝑖𝑛𝑐𝑒 𝐹 = 9.3 >  3.68, the outcomes are 

huge at the 5% criticalness level. One would dismiss the invalid speculation, reasoning that 

there is solid proof that the normal esteems in the three gatherings vary. The 𝑝 − 𝑒𝑠𝑡𝑒𝑒𝑚 for 

this test is 0.002.  

The standard blunder of every one of these distinctions is√
4.5

6
+

4.5

6
 = 1.2. 

4. Concluding Comments 

In many statistical applications in business management, psychology, social technology, and 

the natural sciences we want to compare more than groups. For hypothesis testing, extra than 

two population method scientists have developed ANOVA approach. 
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