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ABSTRACT 

Discrete outcome variable is common in public health, behavioral sciences and in many medical 

applications; the Poisson regression model is useful to analyze discrete random variable. For clustered 

discrete outcome variable where the observations are correlated among individual subjects, the number 

of observed discrete is sometimesgreater than the expected frequency of the Poisson distribution and 

the discrete random variables are over-dispersed. Overdispersion is familiar in discrete random 

variable models particularly within the area of ecology and biological science because of missing 

covariates, non-independent, aggregations of data and an excess frequency of zeros. Every cluster 

levels received a singular level of a random effect that models the extra Poisson variation given 

within the data,  are    usually utilized to discuss heterogeneity in discrete random variable. 

However, studies investigating that the power of cluster level random effects as a way to discrete 

random variablemodel with over-dispersion is scarce. A situation where the variance of the response 

variable exceeds the mean, and hence, both over- dispersion and heterogeneity problems occur, in the 

appropriate imposition of the Poisson model may underestimate the standard error and overestimate 

the significance of the regression parameters, and so, giving misleading inference about the regression 
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parameters. Often, because of the hierarchal study design procedure, zero- inflation, over-dispersed 

and lack of independence   may   occur   simultaneously, which render the    standard    ZIP     model 

is inadequate. The multilevel  ZIP and MZINB regression model are suitable for examining 

clustered correlated and over- dispersed discrete random variablewith many zeros. In this thesis, 

derivation of a proposed score test for evaluating the over-dispersed, heterogeneity and zero- 

inflation parameters in discrete random variableregression models are performed. 

INTRODUCTION 

BACKGROUNDOF THE STUDY 

Modeling is the heart of applied Mathematical and Statistical sciences. Model is the key component in 

any Mathematical and Statistical analysis. In recent years in all mostall fields of science, several 

research works have been directed to either the Mathematical models or the Statistical models. Model 

is a set of structural and functional relationships that can be expressed interms of mathematical 

equations.A Mathematical model is a set of mathematical equations concerns with two or more 

variables. By introducing an error random variable or a disturbance term, the mathematical model 

becomes a stochastic model or statistical model. 

Generally, the mathematical model or the statistical model may be specified either in the form of a 

linear model or in the form of a nonlinear model. The linear modelconsists of a set of linear equations 

concerns with two or more variables. Linear model has received greatest attention both in theory and in 

practice. From the theoretical point of view, it is mathematically tractable, and in practical applications 

of the wide variety, ithas shown itself to be of great value. Further, many non-linear models can often 

be rearranged to be in a linear form. 

Regression method is a statistical technique for investigating and modeling the relationship between 

the dependent and independent variables. Linear regression analysis establishes an average linear 

relationship between a dependent variable and a set of independent variables. Applications of linear 

regression models have a vital role in 

analyzing various mathematical and statistical problems on different fields of science such as 

Economics, Business, Management, Engineering, Agriculture, Medicine, Social science, Biological 

and Life sciences, Physical sciences and Technology. 

STATEMENT OF THE PROBLEMS 

 
Nested data are very common in social sciences, psychology, health science, and others. The classical 
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linear models assuming that the observations havethe same effects across groups.When the 

observations have differenteffects across the groups, the linear regression model is not appropriate. 

Ignoring group membership and focuses exclusively on inter-individual variation and on individual 

level attributes. This approach has a drawback of ignoring the potential importance of a group-level 

attribute in influencing an individual-level outcome. In addition, if outcomes for individuals within 

groups are correlated, the assumption of independence of observation is violated, resulting in an 

incorrect standard error and inefficient estimate (Diggle PJ et al., 1994). 

The method focuses exclusively on inter-group variation and data aggregated to the group level 

variables. This approach eliminates the non-independence problem mentioned above but has the 

drawback of ignoring the role of individual-level variables 

in shaping the outcome. Both methods essentially collapse all variables to the same level and ignore 

the multilevel structure.These approaches allow and define separate regression for each group 

coefficients to differ from group to group, but does not examine how specific group-level properties 

may affect individual-level outcomes or interact with individual-level variables. 

REVIEW OF LITERATURE 

The purpose of this chapter is to give a brief summary of concepts and theories about the generalized 

linear model for clustered discrete random variable, overdispersion, zero-inflation and the power of 

tests. This chapter also explains the review of the literature on the discreterandom variableregression 

models. 

LINEAR STATISTICAL MODELLING 

 
Regression analysis is collection of statistical techniques for modeling and investigating the 

relationship between a response variable of interest and a set of predictor variables. In the classical 

regression model,the response variable y which is ourmain interest, select a sample of size n from our 

population of interest and observe values 𝑦i, i = 1, . . . , n, then wish to infer properties of the variable 

y in terms of other observed predictors𝑥i = (𝑥1i, . . . , 𝑥𝑘i). The main use of these predictor variables is 

to acount for differences in the response variableor to put it another way to explain the variation in 

y.Consider the classical linear model 

𝑦ij  = Xij𝛽 + 𝑒i , ................................................................................................................................... (2.1) 

where𝛽 is the coefficient of regression for Xij, and 𝑒iis a random or error term and 

assumed that the error terms are identically and independentely distributed a normaldistribution 
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with mean zero and variance 𝜎2
. Also assumed that the outcome variable 𝑦 

𝑒 ij 
 

follows a normal distribution with mean Xij𝛽 and variance 𝜎2
. The coeffi𝑒cient of determination 

 

 
(𝑅2

) is a measure of the amount of variance in the dependent variable explained by  the 

independent variable(s). 

SCORE TEST FOR HOMOGENIETY OF GROUPS IN THE MULTILEVEL POISSON 

MODEL FOR CLUSTERED DISCRETE RANDOM VARIABLE 

3..1. INTRODUCTION 

 
Data with a multilevel nature often happens in public health, health service research, behavioral 

sciences, and in medicine. Examples embrace patients nested within hospitals, residents nested within 

a geographical area, students nested within a class, class nested within facilities and staff nested within 

a corporation. For clustered discrete random variable, the observations are usually correlated, there are 

three main approaches for correlated discrete random variable have been proposed (Perntile, 1988); 

conditional models, random effects model, generalized estimating equations (GEE`s). Conditional 

models Rosner (1984) are convenient only for particular cases, such as data with small group sizes or 

with order structure. 

Analysts are progressively aware that the multilevel regression models are an appropriate way to 

analyze clustered data. Aconsequence of clustering of the groups within clusters or higher level units 

is that subjects from the same area could have more similar outcomes than subjects came from a 

different area. Themultilevel regression models incorporate cluster-specific random effects that 

account for the dependency of the observation by partitioning the total individual variance into 

variation as a result of the cluster. The likelihood ratio test between the ordinary regression model and 

mixed effects models may be used as a homogeneity test (Self and Liang 1987).This chapter focuses 

on a multilevel Poisson regression modelapproach, the distribution of the response variables is 

modelled conditionally in a group-specific parameter that is itself a random variable (Laird and Ware 

1982, Stiratelli, Laird, and Ware 1984), to take of the coefficient of regression and random parameters 

in Poisson discrete points. 

THE MULTILEVEL POISSON REGRESSION MODEL 

In the model formulation, when the outcome variable is discrete denoting the number of time that an 

incident occurred, a Poisson regression model can be accustomed relate the mean number of events to 
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1 

a group of explanatory variables employing a logarithmic link function. Then, the Poisson 

regression  model will be used as𝑙𝑜(𝜇i) = Xi𝛽 , 𝑌i∼𝑃𝑜i𝑠𝑠𝑜𝑛 (𝜇i)  ------------- (3.1) 

where Xi denotes a p×1 column matrix of covariates measured with the i𝑡ℎ  subject, 𝑌i 

 
denotes the discrete outcome variablemeasured with the i𝑡ℎ  subject, denotes a 1×p row matrix of the 

regression coefficients and the parameter 𝜇i denotes the expected or mean number of events for the i𝑡ℎ  

subject given their set of observed covariates.Consider a two-level random intercept Poison regression 

model and it is assumed that the intercept is allowed to vary randomly across the groups. 

Let Yij be the responsevariable for the observation jof group i, i =1, 2… k; j = 1, 2… ni 

 

k 

 

with N 

i 

, the conditional distributions of the outcome variable 

 

 

y ( y , y   ,..., y )
`, given a set of cluster level random effects 

i i1 i 2 ini 

 
and the probability 

 

 

density functions of Yij is defined as follows 
 

 
ƒ(𝑌 \𝜇 

𝑛i 
 

) = 𝖦 
0{𝑒𝑥(𝑥 

𝛽 + 𝑧 )}
𝑦ij𝑒𝑥𝑝 2−𝑒𝑥𝑝 . 𝛽 + 𝑧 /3 / !1 

ij ij 
 
 

i=1 

ij ij 

i 

ij ij i ij 

 

 

 

 

𝑛i 

 

 

i=1 

 

 
=  𝑥𝑝 <∑{𝑦ij(𝑥ij𝛽 + 𝑧ij𝑢i) − 𝑒𝑥𝑝(𝑥ij𝛽 + 𝑧ij𝑢i) − 𝑙𝑜𝑔(𝑦ij!)}= 

 

 

𝑛i 

= 𝑒𝑥𝑝 <∑{𝜃i𝑦ij  − 𝑔(𝜃ij)} + 𝐶(𝑦ij, 𝑐i)=  ................................. (3.2) 

ni 

i 
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i=1 

 

 

 

where (𝑦ij, 𝑐i) = ∑𝑛i 𝑙𝑜𝑔 (𝑦ij!),which𝐶(𝑦ij, 𝑐i) does not depend on the model 

parameters.The mean and the variance of Yij are respectively, 

 
𝜇ij  = 𝐸(𝑦ij ⁄𝛼i) = 𝑔′(𝜃ij) =  𝑒𝑥𝑝 .𝑥ij𝛽 + 𝑧ij i /  and 

 

𝜎2
  = 𝑉𝑎𝑟(𝑦ij) = 𝑐i𝑔′′(𝜃ij) = 𝜇ij  = 𝑒𝑥𝑝 .𝑥ij𝛽 + 𝑧ij /, 

ij  i 

 
 

where'denotesthe differentiation with respect toparameter 𝜃ij. Consider the mixedeffects 

modelallowing atleast one regression coefficient to be random is 

𝜃ij = 𝑙𝑜(𝜇ij) = = 𝑥ij𝛽 + 𝑧ij𝛼i ------------------------------------------------ (3.3) 
 

 

where𝛽 denotes a p×1 vector of fixed effects with its associated design vector 𝑥ijand 

 
 

𝛼iis the scalar random subject with associated covariates𝑧ij. In this model the mean 

 
 

𝜇ijand the variance 𝜎2
 are conditiiojnally onai, now to test homogeneity across andwithin groups, 

consider the random intercept model inwhich 𝑧ij=1 for all i, j.To test 

the homogeneity hypothesis that all of the variables and the correlation among the random effects are 

zero in a generalized linear mixed model. 

 
The parameter ai can be written as 𝛼i = 𝛼 + 𝐷1/2𝑢i, where the𝑢i`s areindependently and identically 

distributed as a normal distribution with zero mean and unit variance. Therefore, 𝛼i`s are identical and 

independently distributed with mean 𝛼 and variance D. Our interest is to test 𝐻0 : 𝐷 = 0 against the 

alternative 𝐻0 : 

𝐷 > 0. Note that fordiscrete random variablemodels; this is equivalent for testing homogeneity across 

groups as well as testing homogeneity within groups. 

The first and the second partial derivatives of the log likelihood function with respect to the scalar 

random subject parameter𝛼i for the multilevel Poisson regression model is given by 

ij 
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𝑃𝐷 

 

∂ 
𝑛i 

[ 𝑙𝑜𝑔ƒi ( 

 

− 𝜇ij )j 

∂𝛼i 

𝛽, 𝛼, , 𝐷 = 0)] = ∑(𝑦ij 

j 

j=1 
 

 

and 
 
 

∂
2
 ∂ 𝑛 

i 

𝑛i 

 
  

6 𝑙𝑜𝑔ƒij (𝛽, 𝛼, , 𝐷 = 0)7 = :∑(𝑦ij  − 𝜇ij)𝑧j; = − ∑ 𝑧2
 𝜎2

 

∂𝛼2 ∂𝛼i 
j=1 j=1 

ij ij
 

 
Using the first and second partial derivation of the log likelihood equationwith respect to𝘢i, the 

score statistic is given by 

𝑘 

( ) 
1
 

𝑛i 2 𝑛i 

2 2 

 
 

 

𝑆 𝛽, 𝛼, = 
2 
∑ {<∑(𝑦ij  − 𝜇ij)𝑧ij= −  ∑[𝑧ij𝜎ij]} 

i=1 j=1 j=1 

 

Then the score test statistic for testing homogeneityH0: D = 0 for the known nuisance parameters𝛽 will 

be 

  𝑆2
 (𝛽, 𝛼)  

𝐻𝑃𝐷 = 

𝐼𝐷𝛽𝐼
−1𝐼𝛽𝐷) 

 

 
𝛽𝛽 

… … … … … … … … . (3.5)(𝐼𝐷𝐷 − 

Now, the asymptotic variance function as the group sizek → ∞of SPD(β, a, D) under H0 (Cox and 

Hinkley, 1974) can be expressed as a function of information matrix. Then the asymptotic variance 

function for the score test is 

(𝛽) = 𝐼𝐷𝐷 − 𝐼𝐷𝛽𝐼−1𝐼𝛽𝐷𝛽𝛽 
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where𝐼 = ∑𝑘 6𝑙i  2
 

𝐷𝐷 i=1 𝐸 06𝐷 │𝐷 = 01 is a scalar 

 

𝑘 −∂
2𝑙 

𝑘 
−∂

2𝑙 

𝐼𝛽𝛽  =  ∑ 𝐸 8 
i
 9 , 𝐼𝛽𝐷  = 𝐼𝐷𝛽  = ∑ 𝐸 8 

i
9 

i=1 
∂𝛽∂𝛽`  

i=1 
∂𝛽∂𝐷 
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1 

 

 PARAMETRIC ESTIMATIONS OF SCORE TEST BASED ON THE 

MULTILEVEL POISSON REGRESSION MODEL 

Now to evaluate the variance of the score function (S) defined as Var(D) =IDD − 𝐼𝐷𝛽𝐼−1𝐼𝛽𝐷. The i
th

 

summand of IDD can be written as 
𝛽𝛽 

2 𝑛i 2 𝑛i 

∂𝑙 
2

 
 

𝐸 ( i
 │𝐷 = 0* = 

∂𝐷 

∑ 𝐸 {<∑(𝑦ij  − 𝜇ij)= − ∑ 𝜎2 } 
2 

ij 
 

 

i=1 j=1 j=1 

 

 
To solve the variance of the score function, let us to define 

 
 

𝑈ij = 𝑦ij − 𝜇ij, the i𝑡ℎ  term of the score test can be written as 

 

 
 

∂𝑙i 
1 

𝑛i 2 𝑛i 

 

 

 
 

 

 

∂𝐷 𝐷=0  = 
2 

<∑ 𝑈ij= 

j=1 

− ∑ 𝜇ij 

j=1 

 

Thus 
 

 

 
𝐸 ( 

 

∂𝑙i 2 𝑛i 
2

 

2 
1 

2 

 

 

∂𝐷 
│𝐷  = 0* = 

4  
:𝑈i − ∑ 𝜎ij; 

j=1 
 

 
 

| 



e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 
Research Paper 

 

2572 
 

j=1 

 

where𝑈i = ∑𝑛i 𝑈ij, now since (𝑈ij) = 0,then 

 
 

𝑛i 2 𝑛i 𝑛i 𝑛i 𝑛i 

(𝑈2
) =  𝐸 :∑ 𝑈2

 ; =   :∑ 𝑈2
  + ∑ ∑ 𝑈ij𝑈ij`; =  𝐸 :∑ 𝑈2

 ; 

i 

 
 

j 

j=1 

ij 

i j=1 
j=1 j❜j` 

ij 

j=1 

 

𝑛i  
= 𝐸 :∑(ij 

− 𝜇ij
 

𝑛i 

2 2 

) ; = ∑ 𝜎ij 

j=1 j=1 
 

 

Therefore,  

 
 

∂𝑙 
𝐸 ( 

i 2
 

│𝐷=0* 

= 
1 
𝐸*𝑈2

 − (𝑈2)+
2
 = 

1 
𝑉𝑎(𝑈2) = 

 

 

 
 

  

 

 
 

1 

(𝜇4 − 𝜇2) 

 
 

∂𝐷 4 i i 4 i 4 2 

where𝜇2 and 𝜇4 are the second and the fourth central moments of𝑌ij, respectively,which can be 

expressed as a function of the second and the fourth cumulates 𝐾2 and 
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2 

ij 

ij 

 

𝐾4   of 𝑌ij  (Kendall and Stuart, 1977). 𝜇4 = 𝐾4 +3𝐾2
,2 = 𝐾2 = 𝜎2

 = 𝜇ij, then 

 

 
𝜇4 = 𝜇ij +3𝜇2

 . After simplification the values of 𝐼𝐷𝐷is 
 

 

 

 
1 

∑ ∑(𝜇 

4 

𝑘  𝑛i 
 

 
 

 

 
ij + 2𝜇2

 ) 

i=1 j=1 
 

 

The variance of the score functions can be derived from the Fisher information. 
 

 

= (
𝐼𝛽𝛽𝐼𝛽𝐷 

*
 

𝐼(𝛽) 
𝐼𝐷𝛽𝐼𝐷𝐷 

 

 

where 
 

 

𝑛i 𝑛i 

∂𝑙i 
= ∑ − ∑ 𝜇 𝑥 

 
 
 

∂
2𝑙 

 
 
 
 

∂𝑙 

∂𝛽 

 
 

𝑛i 

 
 

j=1 

ij 

ij 

 

 

𝑛i 

 
 

j=1 

ij ij 

 

 

 
𝑘 𝑛i 

  i     
= 

  i 
>∑ 𝑦ij𝑥ij  − ∑ 𝜇ij𝑥ij? = − ∑ ∑ 𝜇ij𝑥ij  ij′ 

∂𝛽∂𝛽`∂𝛽 

j=1 j=1 i=1 j=1 
 

 

Therefore  
𝑘 −∂

2𝑙 
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𝑘 𝑛i 
 

 

 

 

 
𝐼 

∂𝛽∂𝛽` 

 

−∂
2𝑙𝑜𝑔ƒ (𝛽, 𝛼, , 𝐷 = 

0 

𝛽𝛽 = ∑ 𝐸 8 
i
 9 = ∑ ∑ 𝐸 8 ij 

∂𝛽∂𝛽` 

 

 

 

 
9 𝐷 = 0 

i=1 i=1 j=1 
 

𝑘 𝑘 𝑛i 

𝑛 

i 
 

= ∑ ∑ 𝑔′′(𝜃ij)𝑥ij 𝑥ij′ = ∑ ∑ 𝜇ij𝑥ij 𝑥ij′ 

i=1 j=1 

𝑘 𝑛i 𝑛i 

∂𝑙i=1 j=1 

 

 

𝑘 −∂
2𝑙 

𝐼𝛽   = 𝐼𝐷𝛽   = ∑ 𝐸 8 
i
9 = ∑ 𝐸 i

  >∑ 𝑦ij𝑥ij  − ∑ 𝜇ij𝑥ij? 

 
 

i=1 

∂𝛽∂𝐷  
 

i=1 

∂𝛼i 
 
 

j=1 j=1 
 

 

𝑘 𝑘 𝑛i 

𝑛 1 

i 

1 

= 
2 

∑ ∑ 𝑔′′′(𝜃ij)𝑥ij = 
2 

∑ ∑ 𝜇ij𝑥ij 

i=1 j=1 i=1 j=1 
 

 

where𝑥ij = (1, 𝑥1ij, … . 𝑥𝑛iij)`. 

which asymptotically as n→ ∞ has a chi-square distribution with one degree of freedom, now the 

maximum likelihood estimate of β can be estimated iteratively by using Fisher`s scoring method from 

the following equations. 
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 MODEL SELECTION 

If there are several models to be compared, in order to select the best modelwhich fits the data 

instead of using the likelihood ratio test, it can be selected by using the Akakie information criteria 

(AIC) and Bayesian information criteria (BIC). 

3.7.1 AKAKIE INFORMATION CRITERIA 

AIC is the most common means of identifying the model which fits thedatawell by comparing two or 

more than two models. The goodness of fit test against the complexity of the model is similar to that of 

the coefficient of multiple determination(𝑅2
); however, it penalized by the number of parameters 

included in the complexity of the model. Unlike the 𝑅2
, the good model is the one which has the 

minimum AIC value.It is given by the following formula 𝐴𝐼𝐶=−2ℓ+2k,whereℓ is the log likelihood 

function of a model that will compare with the other models and 𝑘 is the number of parameters in the 

model including the intercept (Ismail and Jemain, 2007). 

BAYESIAN INFORMATION CRITERIA 

Unlike the Akakie information criteria, the Bayesian information criteria take into account the size of 

the data under consideration. It is given by𝐵𝐼𝐶=−2ℓ+𝑘log (𝑛) whereℓ is the log-likelihood of a model 

that will compare with the other models, 𝑛 is the sample size of the data and 𝑘 is the number of 

parameters in the model including the intercept. 

SIMULATION STUDY 

In this section,a simulation study is conducted to compare the proposed and the existing models in 

terms of sizes and powers. For studying the properties of the statistic in terms of empirical size, 

generatingdiscrete random variable from a Poisson distribution under the null hypothesis of 

homogeneity and assume that the random effects parameterareonce(𝑧ij = 1) andthe samples are 

comprised of 10; 20; 50; 

100observations and 5; 10; 20; 50 groups with simulating data, the multilevel Poissondistribution is 

simulated for the distribution of the response variable assuming that under the null hypothesis 

homogeneity within different number of groups according to the variance D of the distribution of the 

group-specific random effects of the response variable. Each simulation experiment for level and 

power was basedon 1000 simulated samples. 

In the simulated model, we reviewed the literature to define initial parameter values. We presented the 

result of a small simulation study examining the empirical size and power of the test statistics 

discussed in this thesis. The following log linear model for the response variable is assumed (see 
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Jacqmin-Gadda and Commenges (1995)).log(µij) = 0.8x1ij + 0.5ui − 0.5 (3.8) 

yij∼Poisson(µij), i =1, 2… k; j = 1, 2… ni , 

For the variable x1ijis a subject-specific effect which is simulated from a uniform distribution with 

mean zero and unit varianceand ui is group specificeffects and simulated from a standard normal 

distribution and generate a set of random numbers from a uniform distribution in the interval (0,1) as 

the values ofx1ij.For drawing samples and for estimating the maximum likelihood estimates of the 

regression and homogeneity parameters of interest under the null hypothesis, 𝘢i = 

𝘢 + D
1/2

ui. 

 
To simulate correlated data, added a group-specific random effect under the hypothesis of 

homogeneity, that is,D = 0, where the 𝑢i`s are identical and independently distributed with a standard 

normal distribution with mean zero and unit variance. Therefore, 𝛼i`s are identical and independently 

distributed with mean 𝛼 and variance D.For each set of generated data, a multilevel Poisson model is 

fitted for calculating the score test and the existing tests followed by the powers of the score tests. 

Results from the simulation study are presented in Table- 3.1and 3.2. 

 

In Table 3.1 the results investigated thathow the information criteria perform in the multilevel Poisson 

regression model selection problems via simulations. Model with smaller AIC is considered to be 

better.When the number of clusters is large and the number observation is small then the multilevel 

Poisson regression model is better than the standard Poisson regression model, whereas when the 

sample size and cluster numbers are small then the Poisson regression model is better than the 

multilevel Poisson regression model. The simulated data results indicated that the performance of the 

criteria to select the true model generally involved with an increase of sample size, despite differences 

in performance among the information criteria. The simulated resultsindicate that the performance of 

the model depends on the sample size and the number of clusters. 
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K=5  and D=0.05 
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0.95 

Number of Observations 
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0.01 

Data are generated from the multilevel Poisson distributio under the nullhypothesis on 1000 

replication. In the simulation, thelevels (10%; 5% and 1%), the 

sample size (10, 20, 50 and 100) and the number of groups (5, 10, 20 and 50 ) areconsidered. 

 
 

In note that an error probability increases power increases. The power of the tests of the three scenario 

increases when a increases, and for large sample groups and small variance for the group effect ( k = 

50, n = 10, D=0.05) the power increase fast and approaches to 1. For small sample groups, when the 

standard deviations of the group effectsincrease, the power increases slowly, whereas in large sample 

groups, (k = 50, n = 50, D=0.15 and a =0.1) as standard deviations of the group effect increases, the 

power increases slowly, however, when the values of D increase from 0.05 to 0.15, the power 

decreases. Generally, as the number of groups increases, the power is slightly increases. Therefore, 

the proposed score test is more important for testing and controlling heterogeneity of the group effects 

by fixing the number of observation and number of groups due to its high power to predict the model. 

 
Increasing the sample size will decrease the standard error (and increasepower). Similarly, increase the 

amount of variance in x will increase power. However, increasing amount of unexplained variance 

will serve to decrease power. Sample size is not the only factor for power in the multilevel model, 

effects on power can depend on the parameters (intercept estimate, individual specific intercept, slope 

estimate, individual specific slope, standard error of the average (between person), slope error, 

variances of the independent variable, variances of individual slope (multilevel), sample size and 

cluster size), Sean P. Lane and Erin P. Hennes (2018). 
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In this article, the power of the multilevel Poisson regression models viasimulated data results 

arepresented. A simulation and application data are used to illustrate our method. The results revealed 

that the proposed score testis more preferable than the existing model. Based on the information 

criteria, AIC, the 

proposed model is better than the standard Poisson model. The results in Table3.8,revealed that deaths 

of children varied among regions. In addition, all covariates and dummy explanatory variables were 

found to be significant differencein the deaths of children between regions. The AIC values of the 

empty model with random intercept are larger than that of the random intercept and fixed coefficient 

model, which implies that the random intercept model is better than the standard Poisson model and 

also on the predicted probability, the multilevel Poisson regression model is better than a Poisson 

regression model. 

 

 
CONCLUSION 

 
 

In clustered discrete random variable, when the responses of each observation are correlated, familiar 

ANOVA and regression models do not give optimal analysis. The standard multilevel models yield 

correct inference for clustered normally distributed data. Generalized linear models specifically the 

Poisson and negative binomial regression models give correct inference for non clustered data. In this 

thesis, developed the multilevel discrete random variablemodelsillustrated withexamples and 

simulation study, presentingsome score test statistics foranalyzing overdispersion, zero-inflated and 

heterogeneity in clustered discrete random variable and compare the existing model with its alternative 

model tests and identified the best test statistic for testing coefficients of regression, overdispersion, 

zero inflation, and heterogeneity parameters of clustered discrete random variable interms of its power 

and size. 

 
we developa proposed score test based on the multilevel Poisson model for testing heterogeneous 

parameterin the equidispersed clustered discrete random variableand analyzed the Poisson regression 

model with the assumption that it is used for model fit under the null hypothesis. Furthermore, the 

likelihood ratio tests are used as an alternative test to select the best model.Fromthe simulation and 

application study results shown that when the dataset has heterogeneous groups indiscrete random 

variable, the multilevel Poisson regression model gives a good and correct result in the analysis 

while Poisson regression is clearly not adequate for handling heterogeneous data. However, when 
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the data has homogenous between groups, the Poisson regression model is more reliable. From the 

simulation study, for fixed values of sample size, when the coefficient of regression and heterogeneity 

parameter are increasing the power of the scores are increasing. On the other hand, forfixed values of 

the coefficient of regression and heterogeneous parameters, when the sample size increasing the power 

of the score test is increasing. For large values of thesample size and coefficient of the regression and 

heterogonous parameters, then the difference among different tests become trivial in terms of its 

power. For other cases, the proposed score test is more appropriate for general use because of its high 

Power. 
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