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Abstracct 

For many years, statisticians have been interested in locating "outlying," "unusual," or 

"unrepresentative" observations as a prelude to data analysis. Data that has been entered 

improperly or that does not belong to the population from which the rest of the data was 

collected may cause estimates to be skewed and findings to be misleading. In a number of 

circumstances, methods have been developed to detect and/or accommodate outlier findings. 

Scientists are gathering huge data sets thanks to recent technological advancements, and analysts 

are delving deeper to uncover the secrets of data. As a result, having a solid technique in place 

for dealing with rogue findings that may go unnoticed in a normal data analysis is critical. 

Introduction 

Consider a scientist researching a certain mosquito species. He would not be interested in 

the features of other kinds of mosquitoes in his data collection; instead, he would simply wish to 

delete the observations or verify that the observations did not affect the statistical estimations of 
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the original population. The methods should handle the outliers in this scenario, but they do not 

need to identify and reject them in the estimate, and are therefore referred to be robust. As a 

result, robustness denotes a lack of susceptibility to minor departures from the assumptions 

(Huber, 1981). 

It's essential to have some understanding of why or how outliers developed, in addition to 

recognising or tolerating them. The kinds of variation are divided into three categories by Barnett 

and Lewis (1994). 

Univariate Outliers  

The notion of outlier seems to be very easy to describe in univariate data. Outliers are 

data points that are "far apart" from the bulk of the data and "likely do not fit the model." A basic 

data plot, such as a scatter plot, stem-and-leaf plot, QQ-plot, or other similar layout, may 

frequently show which points are outliers. Because it strikes between the eyes, this is often 

referred to as the "interoccular test." 

Tukey (1977) popularised the boxplot as a graphical method for identifying outliers in 

univariate data. If observations fall beyond the interval, the boxplot rule classifies them as 

outliers. 

 

The ith quartile is denoted by Q. The most frequent values for k are 1.5 for "out" values 

and 3.0 for "far out" observations. The chance of declaring outliers when none exist varies with 

the amount of observations since this criterion is not sample-size dependent. In this way, it varies 

from conventional outlier detection methods, which are based on the likelihood of detecting 

outliers when none exist. 

The popular boxplot outlier labelling criterion, according to Hoaglin et al. (1986), is very 

permissive, with a 50% probability of identifying at least one outlier given data from a random 

normal sample of size 75. The rule was updated by Hoaglin and Iglewicz (1987) to make it 
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sample-size dependent, such that the probability remains at 5% for normal samples up to 300 

observations. This modified approach was extended by Banerjee and Iglewicz (2007) to handle 

large sample situations and a wide range of continuous univariate distributions. Kimber (1990) 

changed the usual boxplot outlier-labeling method for skewed distributions somewhat by 

substituting 

 

M stands for the sample median. Kimber also used k = 1.5 to investigate the exponential 

distribution, including right-censored data, and utilised the Kaplan-Meier estimator to get the 

median and quartiles for censored data. Two univariate outlier identification techniques were 

proposed by van der Loo (2010). The majority of observed data is approximated in both 

approaches by regression of observed values on their predicted QQ - plot locations using a model 

cumulative distribution function..  

Multivariate Outliers  

Multivariate outliers offer a greater difficulty than univariate data because visual 

identification of multivariate outliers is almost impossible since outliers do not "pop out" at the 

conclusion of the data (Gnanadesikan and Kettenring, 1972). It won't assist to depict the data in 

bivariate form with a systematic rotation of coordinate pairs. Several important ideas provided by 

Barnett and Lewis (1994) and Beckman and Cook (1983) indicate to the importance of 

multivariate outlier identification techniques for anomaly detection. 

The breakdown point is a useful metric for describing the robustness of estimators in the 

face of outliers. The breakdown point of an estimator, according to Hodges (1967) and Hampel 

(1968, 1971), is the percentage of arbitrary contaminated data that may be given in a sample 

before the estimator's value becomes arbitrarily high. For location and covariance estimators, 

Lopuhaä and Rousseeuw (1991) provided more precise definitions of the breakdown point. The 

breakdown point a n* (, X) is defined for a location estimator at a collection of observations X.  
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as:  

 

where 𝑋̃ is a collection of observations corrupted by replacing observations with arbitrary 

values. From (1.3), it can be seen that the breakdown point for a location estimator is the smallest 

fraction of a sample that can be corrupted by outliers before the distance between the true sample 

mean and the corrupted sample mean can become arbitrarily large.  

The formal definition of the breakdown point for the covariance estimator, ,is given by :  

 

D(A, B) = max|/(A) – 1/(B)|, |p(A)-1 – p(B)-1|, and i(A) is A's ith ordered eigen value. In 

other words, the breakdown point for a covariance estimator is the smallest fraction of a sample 

that can be corrupted by outliers before the difference between the largest eigen values of the 

true and corrupted covariance estimates becomes arbitrarily large, or the difference between the 

smallest eigen values of the two estimates is arbitrarily close to zero. As stated by Rousseeuw 

and Leroy, it is preferable to employ estimators with a high breakdown point approaching the 

theoretical limit of 50% when estimating the mean vector and covariance matrix for a sample of 

data (1987). Unfortunately, the traditional mean and covariance estimators only have 1/N 

breakdown points, where N is the sample size (Donoho and Huber, 1983). As a result, with as 

little as one contaminated observation in the sample, the classical mean and covariance 

estimators may possibly yield unbounded estimates in the sense of (1.3) and (1.4). 

Robust Distance-based Methods  

There are numerous  robust distance-based outlier detection methods evolved over the 

last two decades and the following are the findings presented in order.  
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a. M-Estimation Method  

One of the earliest robust distance - based methods was proposed by Campbell (1980), 

who suggested using M-estimators to obtain robust mean vector and covariance matrix estimates. 

However, M-estimators were originally proposed by Maronna (1976), as an affine equivariant 

method for obtaining robust mean vector and covariance matrices for possible use in linear 

discrimination, principal component analysis, and outlier detection. The M-estimates of a 

location vector t, and a scatter matrix V, are defined as the solution to the following system of 

equations:  

 

where u1 and u2 are functions of the Mahalanobis distance based on certain assumptions. 

In general, these functions serve as weighting functions that minimize the impact of outlying 

observations have on the mean and covariance estimates. Different forms of the weighting 

functions have been proposed in the literature. To find a solution for (1.7), iterative methods are 

typically employed but, there is no guarantee to attain the global optimum. As determined by 

Maronna (1976), a weakness of these estimators is a breakdown point of 1/(p+1), where p is the 

dimension of data, which can be problematic if operating in high-dimensional space.  

b. MVE and MCD Methods  

Rousseeuw (1983) introduced the Minimum Volume Ellipsoid (MVE) and Minimum 

Covariance Determinant (MCD) as techniques for estimating the position and dispersion of data 

as an alternative to the M-estimation approach with high breakdown point. The MVE technique 

looks for the ellipsoid with the smallest volume that covers at least h of the observations, where h 

is [n/2]+1 and n is the number of samples. To ensure consistency with a multivariate normal 
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distribution, the mean vector estimate is the centre of the ellipsoid, and the covariance is the 

ellipsoid itself multiplied by a correction factor. Similarly, the MCD searches for the sub sample 

of h observations with the lowest determinant in the covariance matrix. The covariance estimate 

is the covariance of the h observations multiplied by a consistency factor, and the mean vector is 

the mean of the h observations. The Mahalanobis distance of all the data is then computed using 

the MVE or MCD estimations to identify outliers. The MVE and MCD have a high breakdown 

point of 50%, making them particularly helpful for severely polluted data. The combinatorial 

optimization issue that must be addressed to discover these estimators' precise answers is one of 

their drawbacks. To discover approximate answers, search heuristics are used in practise. 

Hadi's Forward Search Method  

Hadi (1992) highlighted many shortcomings with the MVE-based outlier identification 

technique provided by Rousseeuw and Leroy (1987) and Rousseeuw and van Zomeren (1990). 

The user must first select how many sub-samples to utilise in the resampling method. This option 

is not apparent since it is dependent on the probably unknown percentage of outliers in the data. 

A second drawback is that the sub-sample covariance matrices are calculated using just p + 1 

data, which may result in singularities or extremely incorrect estimates. Hadi's last point is that 

many sub-samples may have covariance determinants that are near to zero, leaving the user with 

the job of choose which sub-sample to select from the MVE estimate. Because the covariance 

patterns of these sub-samples may vary significantly, the resultant MVE estimations are likewise 

likely to differ. As a result, selecting the appropriate sub-sample is not straightforward. 

Hadi presented an MVE-based, non-affine equivariant outlier identification approach that 

starts by calculating the vector of coordinate-wise medians for the original data to compensate 

for the constraints of the original MVE resampling method. The covariance matrix for the data is 

then estimated using the median vector. The robust Mahalanobis distances for the data are 

computed using these location and covariance estimations. The [(n+p+1)/2] observations with 

the lowest distances are selected and utilised to provide traditional mean vector and covariance 

estimations, as well as a new set of distances for all of the observations. The p +1 observations 
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with the lowest distances are chosen from this most recent collection of distances to create the 

fundamental subset. 

COMEDIAN APPROACH TO DETECT MULTIPLE OUTLIERS IN MISSING DATA 

When univariate outlier detection techniques are applied to each variable, observations 

that are unusual in a single variable may be identified as outlying. When considering each 

variable measurement in respect to the other variables, an observation may be identified as an 

outlier in multivariate data. Multivariate outlier detection methods, for example, in clinical 

laboratory safety data, may highlight a patient whose laboratory measurements do not follow the 

same pattern of relationships as the majority of patients, despite the fact that their measurements 

are not found to be outlying when considered one at a time. The process of detecting outliers is 

an intriguing and essential element of data analysis, since it has the potential to influence 

inference. 

Correlated Data  

Since the Comedian method is not affine equivariant it is important to conduct a study 

using correlated data as its behavior depend upon the covariance structure of the data. Devlin et 

al. (1981) used a correlation matrix P for generating Monte Carlo data from different 

distributions of moderate dimension (p = 6). The matrix P = ((𝜌ij)) has the form 

 

The matrix P has several desirable features. First, its dimension is large enough to 

study multivariate estimators. Secondly, the range of correlation values is large, so 

that differences in the abilities of the methods to detect outliers from highly correlated datasets 

can be checked (Devlin et al., 1981).  

Dataset of 100 observations were generated from an asymmetric contaminated normal 

which is a mixture of 100(1-a) observations from N(0,P) and 100a observations from N(5u,P), 

where u = (1, ..., 1)". The success rates of the four methods for different percentage of 

contamination in correlated data are observed to be same. Hence, it is clear that the Comedian 
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method is as efficient as other affine equivariant methods to detect true outliers from correlated 

datasets. Also, Table 3.3 shows that the Comedian  method has low false detection rates even for 

correlated data.  

COMEDIAN APPROACH TO DETECT MIXED-TYPE OUTLIERS  

Data analysis usually deals with a large number of variables being recorded and subjected 

to statistical scrutiny and analysis for drawing meaningful inference. The chapters covered 

presume that data is continuous in nature and the detection of outliers is dealt as a first step 

towards coherent analysis. Various methods for detecting outliers from large dimensional data 

sets have been studied (Barnett and Lewis, 1994) and many of these techniques assume that all 

attributes in the dataset are either continuous or categorical. However, many real and practical 

datasets are of mixed-type with a heterogeneous mixture of categorical (nominal) and continuous 

type attributes. For example, a data point representing a network flow may contain continuous 

type (number of bytes transferred between two hosts, length of the connection in seconds, etc.) 

and categorical type (service accessed, network protocol used, etc.) attributes. The problem of 

analysis of mixed-type datasets is not quite straightforward and needs careful consideration.  

Having different attribute types in a data set makes it difficult to find relations between 

two attributes (for example, correlation between the attributes) and to define distance or 

similarity metrics for such data points. Usually, for processing datasets with a mixture of 

attribute types, many techniques homogenize the attributes by converting continuous attributes 

into categorical attributes by discretization (quantization), or converting categorical attributes 

into continuous attributes by applying some (arbitrary) ordering, which can lead to a loss in 

information and an increase in noise (Otey et al., 2006). A better outlier detection system would 

be needed to develop meaningful and useful distance metrics in mixed-type attribute spaces and 

measure the dependencies between attributes of different types.  

Detection of Outliers in Mixed-type Data  

Inlying score of an observation is defined as the number of observations in its 𝛿  – 

neighbourhood Nhd(𝛿, d) with radius 𝛿 and a distance measure d. Distance measure computes 

the distance of each observation from other observations and those observations that have a 

distance less than the radius will be considered as neighbours.  The rationale behind inlying 

score is that, the uncontaminated observations possess large neighbourhoods than a small group 
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of outliers. As a result, the normal observations hold a large inlying score. But, it may not be the 

same if the distance measure is not robust or the radius values is not properly selected. Hence it 

is essential to have a robust distance measure and a suitable radius value. The proposed 

method derives distance measure and radius value as follows.  

Let X = [X': X"] be an n x p data matrix contains p1 continuous and p2 nominal attributes 

with rows xi
T = [xi

I :xi
II] i = 1, ..., n and p = p1+p2. Here xI is a matrix of order n x pı with 

continuous attributes and XII is a matrix of order n * p2 with nominal attributes. Han and 

Kamber (2002) presented a suitable distance measure for mixed-type data which is a 

combination of different distance measures. Let xi and xj be two observations in X. The 

combined distance measure between xi and xj is given by  

               (3.1) 

where dc and dN  are the corresponding distance measures of continuous and 

nominal attributes.  

An appropriate metric that measures the distance between two continuous  

observations is Mahalanobis distance. Let xi
I and xj

I be the two observations in XI. 

The Mahalanobis distance between xi
I and xj

I is defined as  

              (3.2) 

where C is the sample covariance matrix of XI. Small value of md may indicate that 

the corresponding observations are close to each other and are sharing a common neighborhood. 

However, the Mahalanobis distance suffers from the twin problems of masking and swamping. 

In masking, observations holding small value for md may not be in same neighbourhood and in 

masking, neighboring observations need not possess small value for md. These problems occur 

due to the fact that, the sample covariance matrix S is not robust to the presence of outliers. 

Various estimators are available in literature and the current approach suggests the use of 

Comedian estimate proposed by Sajesh and Srinivasan (2011a). These estimates are highly 

robust and possess high breakdown value. Using the Comedian estimate S of scatter, a robust 

Mahalanobis distance is defined as follows  
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      (3.3) 

Similarly, a matching coefficient would be a suitable distance measure for  

nominal observations. Let xi
I and xj

I be the two observations in XII with m 

matching attributes. Then the distance between xi
I and xj

I  is defined as ,  

   (3.4)  

CONCLUSION 

The techniques for identification of outliers and understanding its impact on data are 

extremely important in data analysis. It is pertinent to note that detection of outliers is at times 

important by itself in data analysis, as exemplified in the introductory Chapter, and further could 

provide distorting results.  

An extensive literature is available on detection of outliers especially on univariate data 

(Barnett and Lewis, 1994). However, less attention has been paid in dealing with outliers present 

in multivariate data. The detection of multiple outliers in multivariate data is more complex than 

univariate data and the problem gets substantially increased with the dimension of the data. The 

graphical representation of high dimensional data may not be really useful to study outliers. 

However, multivariate data with dimension greater than two, scatter plots of all possible pair of 

variables could be considered but detection of outliers is not guaranteed and even if detected 

could be misleading. For example, an outlier containing mild but systematic errors in all of 

its components will remain hidden unless a suitable linear transformation of the data 

is performed . In addition, the number of scatter plots required gets increased enormously with 

the dimension of the data. Principal Component Analysis (PCA) is a popular statistical method, 

used to explain the inherent covariance structure of data based on a multiplicative model. 

The components obtained through an orthogonal transformation are linear combinations of the 

original variables, and often allow for a better understanding and interpretation of different 

sources of variation. The principal component biplot is a graphical tool to simultaneously 

visualize the scores and loadings of principal components obtained from the classical principal 

http://www.ijfans.org/


e-ISSN 2320 –7876 www.ijfans.org 
Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved Research Paper 

 

 

 

 
  
  
     

1333 
 

component analysis. However, PCA biplot is highly influenced by outliers and hence used 

limited in practice.  

To overcome this difficulty and to visualize the multidimensional data into a 

two dimensional plane, a robust principal component biplot, called ROBPCA biplot (Sajesh and 

Srinivasan, 2009) has been proposed. The ROBPCA biplot making use of a robust principal 

component method proposed by Hubert et al. (2005). ROBPCA biplot can be used to analyze the 

correlated structure of the data. Usually, the first two components of the ROBPCA biplot explain 

a good amount of variability and could well be a true representation of the data. Then a well 

defined ellipse is superimposed on ROBPCA biplot and observations outside the ellipse are 

identified as outliers. The numerical study reveals that the method could very well detect outliers 

for a moderate sized data set with correlated structure.  

Lastly, the performance of Comedian method gets enhanced in terms of success rate 

and false detection rate with the increase in the dimension of the data. The difficulty in detecting 

outliers from multivariate data gets compounded with the multi-cluster data as most of the 

available methods in literature fail to detect outliers from such type of data. Sajesh and 

Srinivasan (2011b) proposed a computationally efficient method to detect multidimensional 

outliers from multi-cluster data. The method starts with the Subtractive clustering, method in 

which the number of clusters is not known in advance. In the first phase of outlier detection, the 

Comedian method is applied to individual clusters and detect outliers from each cluster. In the 

second phase, the detected outliers are again checked across all the clusters. To examine 

the performance of Comedian clustering method, an extensive simulation was considered under 

varying number of clusters, sizes and dimension and the results revealed the efficiency of the 

method to detect outliers from multidimensional multi-cluster data.  

In addition to the size and dimension of the multivariate data, nature of the data type of 

data adds additional complexity to the analysis. The multivariate data could betotally continuous, 

totally discrete or could be a mixed type of both continuous and discrete in nature. When the 

dataset contains discrete type variables most of the outlier detection methods fail to detect the 

exact outliers or they may not be applicable to such datasets. Sajesh and Srinivasan (2010) 
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introduced a method to detect multidimensional outliers from mixed-type data. The proposed 

procedure looks into the neighbourhood of each observation and assigns an inlying score to the 

observation using a robust distance measure and a well defined radius. The distance measure 

used for the proposed procedure is an appropriate combination of different distance measures 

corresponding to different nature of variables. The efficiency of the method has been studied 

based on the success rate and the false detection rate using a simulation study. In addition, 

the method was applied to well-known real datasets to evaluate its performance.  
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