A Study on Some Cordial Labeling

*1 Indhumathi V. M. Phil Scholar, Department of Mathematics, BharathUniversity, Chennai. 72
*2 Dr. K. Ramalakshmi: Associate Professor, Department of Mathematics, Bharath University, Chennai. 72
indumathibrt@gmail.com ramaug1984@yahoo.com
Address for Correspondence
*1 Indhumathi V. M. Phil Scholar, Department of Mathematics, BharathUniversity, Chennai. 72
*2 Dr. K. Ramalakshmi:
Associate Professor,
Department of Mathematics, Bharath University, Chennai. 72
indumathibrt@gmail.com ramaug1984@yahoo.com

Abstract

: In this paper we investigate a now labeling called 3-total super product cordial labeling. Suppose $G=(V(G), E(G)$ be graph with vertex set $V(G)$ and edge set $E(G)$. A vertex labeling $f . V(G) \rightarrow\{0,1,2\}$. For each edge wv assign the label $\left(f(u)^{*} f(v)\right) m$ 3. The map f is called a 3-total super product cordial labeling if $|f(i)-f(0)| \leq 1$ for $i, j \varepsilon\{0,1,2\}$ where $f(x)$ denotes the total number vertices and edges labeled with $x=$ $\{0,1,2\}$ and for each edge $u v,[f(u)-f(v) \leq 1$. Any graph which satisfies 3-total super product cord labeling is called 3-total super product cordial graphs. Here we prove some graphs like path; cycle and complete bipartite graph k_{b}, n a 3 -total super product cordial graphs.

Keywords: 3-total super product cordial labeling, 3-total super product cordial graphs

Introduction

All graphs in this paper are finite, undirected and simple. For all other terminology and notations, we follow Harrary [2]Let $G(V, E)$ be a graph where the

Research Paper

 symbols $V(G)$ and $E(G)$ denotes the vertex set and edge set. If the vertices oredges or both of the graph are assigned values subject to certain conditions it is known as graph labeling. A dynamic survey of graph labeling is regularly updated by Gallian [3]and it is published in Electronic Joumal of Combinatorics.. Cordial graphs were first introduced by Cahit[1] as a weakerversion of both graceful graphs and harmonious graphs. Theconcept of product cordial labeling of a graphs was: introduced by Sundaram et. al[4].Definition 1.1.: Let G be a graph. Let f be a map from $V(G)$ to $[0,1,2\}$. For each edge $u v$ assign the label $[f(u) * f(v)](\bmod 3)$. Then the map f is called 3-total product cordial labeling of G, if $|f(i)-f(j)| \leq 1 \mathrm{i}, j=\{0,1,2\}$ where $f(x)$ denotes the total number of vertices and edges labeled with $x=\{0,1,2\}$.

Definition 1.2.: A 3 -total product cordial labeling of a graph G is called 3-total super product cordial labeling if for eachedge $u v|f(u)-f(v)| \leq 1$. A graph G is 3 -total super product cordial if it admits 3 -total super product cordial labeling.

Theorem 2.1.: Path graph P_{m} is 3-total super product Otherwise: cordial.
Proof: Let P_{m} be the path $u_{1}, u_{2}, \ldots, u_{\mathrm{m}}$
Otherwise: $f\left(u_{1}\right)=f\left(u_{2}\right)=1$

$$
\begin{gathered}
f\left(u_{2}\right)=0 \\
f\left(u_{2+1}\right)=2 ; \quad 1 \leq i \leq 2 p-1 f\left(u_{2 p+2}\right)=1 \\
f\left(u_{2 p+8+i}\right)=0 ; 1 \leq i \leq p-1
\end{gathered}
$$

Assign

$$
\begin{aligned}
& f\left(u_{1}\right)=0 \\
& f\left(u_{\mathrm{a}}\right)=1 \\
& f\left(u_{\mathrm{a}}\right)=2
\end{aligned}
$$

Otherwise:

Define

$$
\begin{aligned}
& f\left(u_{t}\right)=0 ; 1 \leq i \leq p \\
& f\left(u_{p+1}\right)=f\left(u_{p+2}\right)=1 \\
& f\left(u_{y+2+i}\right)=2 ; 1 \leq i \leq 2 p-2
\end{aligned}
$$

Hence f is 3 -total super product cordial labeling
Case II: $m \equiv 1(\bmod 3)$
Case
II: $m \equiv 1(r$
Let

$$
m=3 p+1
$$

Define

$$
\begin{aligned}
& f\left(u_{t}\right)=0 ; 1 \leq i \leq p \\
& f\left(u_{z+1}\right)=1 \\
& f\left(u_{p+1+i}\right)=2 ; 1 \leq i \leq 2 p
\end{aligned}
$$

Hence f is 3 -total super product cordial labeling
Case III: $m \equiv 2(\bmod 3)$
Latm $=3 n+2$
If $p=0$ result is not true
If $p=1$

$$
\begin{aligned}
& f\left(u_{1}\right)=f\left(u_{2}\right)=1 \\
& f\left(u_{2}\right)=0 \\
& f\left(u_{4}\right)=f\left(u_{5}\right)=2
\end{aligned}
$$

Example 2.2.: The path P_{6} and P_{10} are 3 -total super product cordial graphs and $P_{10} \mathrm{~F}$

Figure 1:3 total super product cordial labeling of path $\boldsymbol{P}_{\mathbf{6}}$ and $\boldsymbol{P}_{\mathbf{1 0}}$
Theorem 2.3.: k_{1}, m is 3 -total super product cordial. If $m \equiv 0(\bmod 3)$ and $m \equiv$ $2(\bmod 3)$.

Proof: Let k_{1}, m be the complete bipartite graph we note that $\left|V\left(k_{1}, m\right)\right|=m+1$ $\operatorname{and} E\left(k_{1}, m\right) \mid=m$
$\operatorname{Let}\left|V\left(k_{1}, m\right)\right|=m+1$
$E\left(k_{1}, m\right)=\left\{u u_{i}: 1 \leq i \leq m\right\}$
Case I: $m \equiv 0(\bmod 3)$
| $F(k)$ Let Let $m=3 p$
Assign
$f(u)=1$

Define:

$$
\begin{aligned}
& f\left(u_{3 i+1}\right)=0 ; 0 \leq i \leq p-1 \\
& \qquad f\left(u_{3 i+2}\right)=1 ; 0 \leq i \leq p-1 \\
& f\left(u_{3 i+3}\right)=2 ; 0 \leq i \leq p-1
\end{aligned}
$$

Hence f is 3 total super product cordial.
Case II: $m \equiv 2(\bmod 3)$
Let $m=3 p+2$
Assign
$f(u)=1$

Define:

$$
\begin{aligned}
& : f\left(u_{3 i+1}\right)=0 ; 0 \leq i \leq p \\
& f\left(u_{3 i+3}\right)=1 ; 0 \leq i \leq p-1
\end{aligned}
$$

Hence f is 3 total super product cordial.

Example 2.4; The stars k1, 5 and k1, 9 are 3-total super product cordial graph

Figure 2: 3-total super product cordial labeling of the stars $\mathbf{k}_{\mathbf{1}}, \mathbf{5}$ andk
Theorem 2.5.: Cycle graph c_{m} is 3 -total super product cordial labeling. If : $m \equiv$
$1(\bmod 3)$ and $m \equiv 2(\bmod 3)$
Proof: Let c_{m} be the cycle graph. We note that $|V(G)|=m$ and $|E(G)|=m$.
Case I: $m \equiv 1(\bmod 3)$
$\mathbf{L e t} m=3 p+1$

$$
\begin{array}{lr}
f\left(u_{i}\right)=0 ; 1 \leq i \leq p & \\
& f\left(u_{p+1}\right)=1 \\
& f\left(u_{p+1+i}\right)=2 ; 1 \leq i \leq 2 p-1
\end{array}
$$

Hence f is 3 -total super product cordial.
Case II: $m \equiv 2(\bmod 3)$

$$
\text { Let } m=3 p+2
$$

Define:

$$
\begin{aligned}
& f\left(u_{i}\right)=0 ; 1 \leq i \leq p \\
& \\
& f\left(u_{p+1}\right)=1 \\
& \\
& f\left(u_{3 p+1}\right)=1
\end{aligned} \quad f\left(u_{p+1+i}\right)=2 ; 1 \leq i \leq 2 p \text { } \quad .
$$

Hence f is 3 total super product cordial.

Example 2.6:The cycle c7 and c8 are 3-toal super product cordial graphs.

Figure 3: 3 total super product cordial labelling of c7 and c8

Conclusion:

Every 2 total product cordial graph is 2 total super product of cordial graphs.

References

[1] Cahit, I. "Cordial graphs: A weaker version of graceful and harmonious graphs" Ars combinatoria vol. 23, PP. 201-207, 1987.
[2] Harrary Frank, Graph Theory, Narosa Publishing House (2001).
[3] Gallian, J. A., "A dynamic survey of graph labeling" the Electronics Journal of Combinatorics, 17(2010) DS6.
[4] Sundaram M, Ponraj R and Somasundaram S, "Product Cordial labeling of graphs", Bull Pure and Applied Science (Mathematics and Statistics), vol. 23E, PP. 155163, 2004.
[5] Ponraj R, Sivakumar M. and Sundaram M., k-Product cordial labeling of graphs, Int. J.

Contemp. Math. Sciences, vol. 7, (2012) no. 15, 733-742.

