MULTI LEVEL INVERTERS WITH M-CARRIER SPWM: Reduced Switch Topologies

B. Jyothi

Department of EEE, Koneru Lakshmaiah Education Foundation, India-522302
Mail id: jyothieee@kluniversity.in

Abstract

The multilayer inverter topologies using transformers are presented in this study along with a level shift sinusoidal pulse width modulation technique. Two topologies are shown, the first of which includes two bridges with outputs that are either pulse width waveforms or quasi square waves. The two various ratio transformers energise the outputs of the two bridges. To get a 19-level output voltage wave shape, the secondary terminals of two transformers are cascaded. Only one bridge, eight switches, and two DC sources are included in the second topology. The transformer receives the bridge output and serves as an isolator. The 7 -level output is provided by the topology. This topology has fewer components than others to lower costs and provides builtin isolation to increase the converter's dependability. The maximum amplitude and harmonics are achieved using the common level shift SPWM technique with modified carrier, which is m-carrier.

INTRODUCTION

In recent past, multilevel Inverters are considered as the most important power converter for various applications, such as power-active filters, ac traction, direct grid integration systems, electric vehicles, etc[1]. In reality, the quality of multilevel output voltage waveform is enriched as the number of levels moving high. Moreover, an appropriate switching strategy raises their potentiality[2] in terms of good power factor, smaller filter size, improved efficiency, less voltage stress on power devices, and reduce energy waste. In current scenario, diode clamped MLI, flying capacitor MLI, [3] and cascaded MLI are drawn more attention to accomplish the above-mentioned applications[4]. However, to get the required number of output voltage levels by using a smaller number of dc sources, power electronic switching components become a hectic job [4]. In this view, many new inverter topologies with a claim of less device count are suggested in the literature. In the author suggested a cascaded transformer based MLI with single dc supply [5]. Herein, all H-bridges are connected to individual transformers to attain optimal output voltage levels [6]. However, it has drawn a huge number of switches and heavy weight transformers [7]. There are some problems with the conventional MLI's. Those are heavy size when we are dealing with the more levels [8].

19-Level Inverter Operating Principle

The first topology single phase 19 level multilevel inverter topology is shown in Fig. 1. The converter model contains two bridges [9], Bridge A \& Bridge B. Bridge A is a normal H-bridge, and it generates 3 level output
(quasi square wave) [10]. Where the harmonics are shifted to very high level without change in the frequency. The paper topologies are validated with experimental results [11]. bridge B contains 4 extra switches with the normal H-bridge 12]. The extra switches are used to attain different levels in the output. There are two supplies used in the topology are int he ratio of $2: 1$. The output of two bridges are connected to the primary side of the two different transformers [13], one is in the ratio of $1: 2$ and the other in the ratio of $1: 1$. The main intention of using the transformers is the get the maximum number of levels and the transformers provides the isolation from load to source [14]. By use of transformers, it helps reduce the number of switches, so that the size also be reduced [15]. The secondary terminals of two transformers are cascaded to get the total output [16]. The switching states of two bridge switches are tabulated in Table I.

Fig1: Schematic of the 19-level inverter
TABLE I TRIGGERING STATES OF 19 LEVEL TOPOLGY

Bridge A	Bridge B	Output
Sa1, Sa2(0Vdc)	Sb1, Sb2(0Vdc)	0 Vdc
Sa1, Sa2(0Vdc)	$\mathrm{Sb1}, \mathrm{Sb} 2$ ', $\mathrm{Sb} 4, \mathrm{Sb5}(1 \mathrm{Vdc})$	1Vdc
Sa1, Sa2(0Vdc)	Sb1, Sb2', Sb3, Sb6(2Vdc)	2 Vdc
Sal, $\mathrm{Sa} 2(0 \mathrm{Vdc}$)	Sb1, Sb2', Sb3, Sb4(3Vdc)	3 Vdc
Sa1, Sa2' (6Vdc)	Sb1', Sb2, Sb3, Sb6(-2Vdc)	4Vdc
Sal, Sa2' ${ }^{(6 \mathrm{Vdc})}$	Sb1', Sb2, Sb4, Sb5(-1Vdc)	5 Vdc
Sa1, Sa2'(6Vdc)	$\mathrm{Sb} 1, \mathrm{Sb} 2$ '(0Vdc)	6 Vdc
Sa1, Sa2'(6Vdc)	Sb1, Sb2', Sb4, Sb5(1Vdc)	7 Vdc
Sa1, Sa2'(6Vdc)	$\mathrm{Sb} 1, \mathrm{Sb} 2$, $\mathrm{Sb} 3, \mathrm{Sb} 6(3 \mathrm{Vdc})$	8 Vdc
Sa1, Sa2'(6Vdc)	Sb1, Sb2', Sb3, Sb4(3Vdc)	9 Vdc

1. First level (1L): Switches $\mathrm{Sa} 1, \mathrm{Sa} 2$ of Bridge A are ON so that it short the transformer terminals resulting in 0Vdc from Bridge A [17]. Switches $\mathrm{Sb1}, \mathrm{Sb} 2$ ', $\mathrm{Sb4}, \mathrm{Sb5}$ are ON , where sb4, sb5 switches connects
the V2 suppy and resulting in Vdc from Bridge B. Total Voltage $\mathrm{VA}+\mathrm{VB}=0+\mathrm{Vdc}=\mathrm{Vdc}$.
2. Second level (2L): Switches $\mathrm{Sa} 1, \mathrm{Sa} 2$ of Bridge A are ON so that it short the transformer terminals resulting in 0Vdc from Bridge [18] A. Switches $\mathrm{Sb} 1, \mathrm{Sb} 2$ ', Sb 3 , Sb 6 are ON, where sb3, sb6 switches connects the V1 suppy and resulting in 2Vdc from Bridge B . Total Voltage $\mathrm{VA}+\mathrm{VB}=0+2 \mathrm{Vdc}=2 \mathrm{Vdc}$.
3. Third level (3L): Switches $\mathrm{Sa} 1, \mathrm{Sa} 2$ of Bridge A are ON so that it short the transformer terminals resulting in 0Vdc from Bridge A. Switches $\mathrm{Sb} 1, \mathrm{Sb} 2$ ', $\mathrm{Sb} 3, \mathrm{Sb} 4$ are ON , where sb 3 , sb 4 switches connects across the V2 and V1 suppy and resulting in 3Vdc from Bridge B. Total Voltage $\mathrm{VA}+\mathrm{VB}=0+3 \mathrm{Vdc}=3 \mathrm{Vdc}$.
4. Fourth level (4L): Switches Sa1, Sa2' of Bridge A are ON so it gives 3 Vdc and due to $1: 2$ ratio transformer, the output is 6 Vdc . Switches $\mathrm{Sb1}{ }^{\prime}, \mathrm{Sb} 2, \mathrm{Sb} 3, \mathrm{Sb6}$ of Bridge B are turned ON , where Sb 3 , $\mathrm{Sb6}$ switches are leads to connect across V 1 and due to $\mathrm{Sb1}{ }^{\prime}, \mathrm{Sb} 2$ are turned ON , the polarity is reversed and resulting in -2 Vdc . Total Voltage $\mathrm{VA}+\mathrm{VB}=6 \mathrm{Vdc}-2 \mathrm{Vdc}=4 \mathrm{Vdc}$.
5. Fifth level (5L): Switches Sa , Sa ' of Bridge A are ON so it gives 3 Vdc and due to $1: 2$ ratio transformer, the output is 6 Vdc . Switches $\mathrm{Sb} 1^{\prime}, \mathrm{Sb} 2, \mathrm{Sb} 4, \mathrm{Sb} 5$ of Bridge B are turned ON , where Sb 4 , Sb 5 switches are leads to connect across V 2 and due to $\mathrm{Sb1}{ }^{\prime}, \mathrm{Sb} 2$ are turned ON , the polarity is reversed and resulting in -Vdc . Total Voltage $\mathrm{VA}+\mathrm{VB}=6 \mathrm{Vdc}-\mathrm{Vdc}=5 \mathrm{Vdc}$.
6. Sixth level (6L): Switches $\mathrm{Sa} 1, \mathrm{Sa} 2$ ' of Bridge A are ON so it gives 3 Vdc and due to $1: 2$ ratio transformer, the output is 6 Vdc . Switches $\mathrm{Sb} 1, \mathrm{Sb} 2$ of Bridge B are turned ON to short the 2 nd transformer terminals and resulting in 0 Vdc . Total Voltage $\mathrm{VA}+\mathrm{VB}=6 \mathrm{Vdc}+0 \mathrm{Vdc}=6 \mathrm{Vdc}$.
7. Seventh level (7L): Switches Sa , Sa ’ of Bridge A are ON so it gives 3 Vdc and due to $1: 2$ ratio transformer, the output is 6 Vdc . Switches $\mathrm{Sb} 1, \mathrm{Sb} 2^{\prime}, \mathrm{Sb4}, \mathrm{Sb5}$ are ON , where $\mathrm{sb} 4, \mathrm{sb} 5$ switches connects the V2 supply and resulting in Vdc from Bridge-B. Total Voltage $\mathrm{VA}+\mathrm{VB}=6 \mathrm{Vdc}+\mathrm{Vdc}=7 \mathrm{Vdc}$.
8. Eighth level (8L): Switches $\mathrm{Sa} 1, \mathrm{Sa} 2$ ' of Bridge A are ON so it gives 3 Vdc and due to $1: 2$ ratio transformer, the output is 6 Vdc . Switches $\mathrm{Sb} 1, \mathrm{Sb} 2^{\prime}, \mathrm{Sb} 3, \mathrm{Sb} 6$ are ON , where $\mathrm{sb} 3, \mathrm{sb} 6$ switches connects the V1 supply and resulting in 2 Vdc from Bridge B . Total Voltage $\mathrm{VA}+\mathrm{VB}=6 \mathrm{Vdc}+2 \mathrm{Vdc}=8 \mathrm{Vdc}$.
9. Ninth level (9L): Switches Sa1, Sa2' of Bridge A are ON so it gives 3 Vdc and due to $1: 2$ ratio transformer, the output is 6Vdc. Switches $\mathrm{Sb} 1, \mathrm{Sb} 2^{\prime}, \mathrm{Sb} 3, \mathrm{Sb4}$ are ON , where sb 3 , sb4 switches connects across the V2 and V1 supply and resulting in 3 Vdc from Bridge B . Total Voltage $\mathrm{VA}+\mathrm{VB}=$ $6 \mathrm{Vdc}+3 \mathrm{Vdc}=9 \mathrm{Vdc}$.
10. Zero level (0L): Switches $\mathrm{Sa} 1, \mathrm{Sa} 2$ of Bridge A are ON so that it short the transformer terminals resulting in 0Vdc from Bridge A . Switches $\mathrm{Sb} 1, \mathrm{Sb} 2$ of Bridge B are turned ON to short the 2 nd transformer terminals and resulting in 0 Vdc . Total Voltage VA $+\mathrm{VB}=0+0=0$ [19].
11. Similarly, the negative states also designed by changing the respective switching states of the Switches of two bridges. The main intension of using this type of is to reduce the number of switches and burden on the switches. The expected output of the inverter is shown in Fig 2.

M Carrier

The carrier used in the first topology comes under the level shift carrier type for different levels. Again, in level shift carrier type, it is categorised into three types. The topology uses the phase opposition disposition PWM technique. Where the carriers in positive and the negative are opposite in phase and every carrier is displaced by some DC offset according to the number of carriers. Normally the type of carrier which we used is either ramp or triangle signals. In the topology we used a different carrier. Generally, when carrier frequency is increased, it shifts the lower order harmonics to higher order harmonics. As if it is still increasing the carrier frequency to very high, the switching states (dv/dt) is increases and EMI affects the operation. But if we reduce the frequency, the harmonics will be in lower order. In order to rectify that the topology represents a new mcarrier, so that without increase in frequency the comparisons of reference wave with the carrier wave is increases with the new carrier.

Fig. 2: Output of the 19-level Inverter
The modified carrier is discovered from the centre aligned carrier so called triangular waveform without changing the peak-to-peak magnitude and frequency of the carrier wave. Consider the triangle waveform with the frequency $1 /$ Ts that splits equally into six parts by the time scale $\mathrm{Ts} / 6$ as like shown in fig. 3(b). If we compare the Fig. 3(b) and Fig. 3(e), where both the figures show the comparison of reference wave and carrier waves having same peak to peak magnitude and same frequency. But when the comparison is done from Fig. 3(b) generates two pulses where in Fig. 3(e) generates four pulses without change in frequency. The difference between the values at the Ts/ 6 and at $2 \mathrm{Ts} / 6$ is considered as δ. For a normal triangle wave the δ value is negative, after checking the different values it is seen that δ at 0.45 gives the better output from different values. When δ is 1 the wave generates 4 pulses but resulting in triple frequency.

Fig. 3. Generating the modified carrier
The same carrier waves are generated with some DC offsets according to the 19 -level inverter. In 19 level inverter it needs 9 carriers in positive side and another 9 carriers in negative side with phase opposition. The comparison block for a single wave is shown in Fig. 4(a). Where 1 is the carrier frequency and 2 is the reference frequency. The system is designed as the pulse is generated only when the comparison of two waves are in the limits of the specific carrier wave peak to peak and lower limit.

Fig. 4(a). Generation of PWM for a single block in MATLAB Simulink model
As we can observe form the Table II, that the switching states of all switches are not in sequence. For that, it needs extra circuitry to generate the PWM pulses. The extra circuit is shown in Fig. 4(a). The extra logic block used to generate the PWM pulse in the range of that comparison level only. Using the DC offset values, remaining carriers are generated, and the Fig. 4(a) model is converted into subsystem and given to every carrier wave. The total carrier wave generation and comparison are shown in Fig. 4(b). The generated waveforms are shown in Fig. 4(c).

Fig. 4(b). MATLAB Simulink model of generation of carrier waves and PWM

Fig. 4(c). 18 Carrier waveforms for 19 level inverter

From Table. I it is observed that the switching period of the switches are not in sequential order. The ON time states of the Switches are listed in Table. II. The number in the table shows the different levels. To get the specific switching pulse. The combination of respective level pulses is given to the OR gate. So that the respective switching logic is attained. The MATLAB model is shown in the fig. 5 .

Table II on State Levels of switches in 19 level Topology

| Switches | Positive
 Cycle | Nalf |
| :--- | :--- | :--- | Negative half Cycle 9 (1,2,3,4,5,6,7,8,9 | $-1,-2,-3$ |
| :--- |
| Sa1 |
| Sa2 |
| Sb1 |
| Sb2 |
| Sb3 |
| Sb4 |
| Sb5 |
| Sb6 |

Fig. 5. Combining level pulses to get Switch Pulse
Now the pulses are ready to give the switches. These blocks are modelled into subsystem and the inputs of the subsystem are reference wave and the carrier wave. The output of the block are pulses of the 8 switches. The remaining switches $\mathrm{Sa} 1^{\prime}, \mathrm{Sa} 2^{\prime}, \mathrm{Sb} 1^{\prime}, \mathrm{Sb} 2^{\prime}$ are the compliment of the switches $\mathrm{Sa} 1, \mathrm{Sa} 2, \mathrm{Sb} 1, \mathrm{Sb} 2$ respectively and they can be generated simply by adding a logical NOT gate to the switch pulses. When these pulses are given to their respective switches according to the modulation index (ma) it generates the multilevel inverter output, where bridge A generates quasi square wave and bridge B generates different level outputs. When ma=1 the inverter generates 19 level output voltage and that is shown in fig. 6. In that model carrier frequency is taken as 1.5 KHz . Single level voltage is taken as 15 volts, so, for 19 level positive side peak voltage is 135 volts and negative side is -135 volts. The type of level shift carrier used in the model is Phase Opposition Disposition (DOP) type, where the positive side and negative side carriers are opposite in phase that means both are mirror image to each other. This type of carrier is used because to get more symmetricity in the output waveform.

To validate the topology the MATLAB Simulink model is done, where carrier frequency fc is taken as 1.5 KHz , single level voltage Vdc is taken as 15 volts. The output is shown in fig. 6 . From the output voltage wave form and from the Table V maximum burden is on bridge A comparative to bridge B . The transformers are not only meant for to attain different levels it also provides the isolation from load to source and itself acts as the protective circuit.

Fig. 6 Output Voltage of the Inverter (19 level)

7-Level Inverter Operating Principle

The second topology is 7-level Inverter. In this topology it contains only single bridge with extra four switches and two DC sources and one Isolation transformer. The extra four switches help to attain more levels. If we use normal cascaded MLI for 7-level inverter, it requires 12 switches in the circuit. Here with the use of 8 switches we can get 7 levels. The circuit is shown in Fig. 7 contains two DC sources $\mathrm{V} 1 \& \mathrm{~V} 2$ are in the ratio of $2: 1$. The transformer is used as a isolation purpose from load side to source side. To attain 7-levels, the switching states of all switches in the circuit are tabulated in table III

Fig. 7. Schematic of 7-Level Inverter

1) First Level(1L): Switches $\mathrm{Sa} 1, \mathrm{Sa} 2$ are ON so that the transformer terminals are shorted or we can open the Sa3 and Sa4 switches so that the supply is blocked resulting in 0 Vdc .
2) Second Level(2L): Switches $\mathrm{Sa} 4, \mathrm{Sa} 5, \mathrm{Sa} 1, \mathrm{Sa} 2$ ' are ON so that the transformer is connected to V 2 source that is 1 Vdc resulting in output voltage of 1 Vdc .
3) Third Level(3L): Switches $\mathrm{Sa3}, \mathrm{Sa6}, \mathrm{Sa1}, \mathrm{Sa2'} \mathrm{are} \mathrm{ON}$, connected to V 1 source that is 2 Vdc and resulting in the output voltage of 2 Vdc .
4) Fourth Level(4L): Switches $\mathrm{Sa} 3, \mathrm{Sa} 4, \mathrm{Sa} 1, \mathrm{Sa} 2^{\prime}$ are ON , so that the transformer is connected across the V 1 and V 2 sources that is 3 Vdc and resulting in the output voltage of 3 Vdc .
5) Fifth Level(-1L): Switches $\mathrm{Sa} 4, \mathrm{Sa}, \mathrm{Sa} 1^{\prime}, \mathrm{Sa} 2$ are ON , so that the transformer is connected across the V1 source with reverse polarity that is -Vdc and resulting in the output voltage of -Vdc.
6) Sixth Level(-2L): Switches $\mathrm{Sa} 3, \mathrm{Sa6}, \mathrm{Sal}$ ', Sa 2 are ON , so that the transformer is connected across the V 1 source in reverse order that is -2 Vdc and resulting in the output voltage of -2 Vdc .
7) Fourth Level(-3L): Switches $\mathrm{Sa3}, \mathrm{Sa4}, \mathrm{Sa} 1^{\prime}, \mathrm{Sa} 2$ are ON , so that the transformer is connected across the V1 and V2 sources in reverse polarity that is -3 Vdc and
resulting in the output voltage of -3 Vdc .

Table III Triggering states of 7 level Inverter Topolgy

Levels	ON Switches	Output
1	$\begin{aligned} & \mathrm{Sa4}, \mathrm{Sa} 5, \mathrm{Sa1}, \\ & \mathrm{Sa2}{ }^{\prime}(1 \mathrm{Vdc}) \end{aligned}$	1 Vdc
2	$\begin{aligned} & \text { Sa3, Sa6, Sa1, } \\ & \mathrm{Sa2}^{\prime}(2 \mathrm{Vdc}) \end{aligned}$	2 Vdc
3	$\begin{aligned} & \mathrm{Sa3} 3, \mathrm{Sa} 4, \mathrm{Sa1}, \\ & \mathrm{Sa2}{ }^{\prime}(3 \mathrm{Vdc}) \end{aligned}$	3 Vdc
4	Sa1, Sa2(0Vdc)	0 Vdc
5	$\begin{gathered} \mathrm{Sa} 4, \mathrm{Sa} 5, \mathrm{Sal}{ }^{\prime}, \\ \mathrm{Sa}(1 \mathrm{Vdc}) \end{gathered}$	-1Vdc
6	$\begin{gathered} \text { Sa3, Sa6, Sal', } \\ \text { Sa2(2Vdc) } \end{gathered}$	-2Vdc
7	$\begin{gathered} \mathrm{Sa} 3, \mathrm{Sa} 4, \mathrm{Sal} \text { ', } \\ \mathrm{Sa} 2(3 \mathrm{Vdc}) \end{gathered}$	$-3 \mathrm{Vdc}$

There is total eight switches in the circuit. The switches $\mathrm{Sa} 3, \mathrm{Sa} 4, \mathrm{Sa}, \mathrm{Sa} 6$ are used to trigger the different levels. The switches and the complement switches of Sa , Sa 2 are acts like a normal H -bridge inverter. As like in 19-level inverter model, 7-level inverter model also has no sequence of Switching. The Switching states of all the switches are tabulated in Table IV.

Table IV on State Levels of switches in 7 level Topology

Switches	Positive Half Cycle	Negative half Cycle
Sa 1	$0,1,2,3$	

Sa 2	0	$-1,-2,-3$
Sa 3	2,3	$-2,-3$
Sa 4	1,3	$-1,-3$
Sa 5	1	-1
Sa 6	2	-2

As like in the 19-level inverter topology, 7-level inverter also uses the m-carrier SPWM technique to shift the harmonics to very higher order. The pulses are generated just like in the 19- level topology but with reduced carriers. The logic of developing the 7-Level inverter topology is same as 19-level inverter topology. The use of 7 -level inverter topology is to reduce the number of switches and only one transformer is used. It can be used when we use the switches having more peak inverse voltage and when the loads are more inductive in nature.

Fig. 6 Output Voltage of the Inverter (7 level)
The above fig. 6 shows the output of MATLAB model of 7 level- inverter with carrier frequency of 1.5 KHz and level voltage of 15 V . As there are two sources in the circuit, one is 15 V and the other source is 30 V .

EXPERIMENTAL RESULTS

To validate the results, a hardware setup was built with the inverter modules. IGBTs are selected for power switches, gate driver circuits, protection circuits are also shown for Bridge A of the considered topology in fig. 7. A similar structure is employed for Bridge B. DC source of 20 V considered for Bridge A and 40 V for Bridge B. Carrier frequency is considered as a 1500 Hz , reference is taken as grid frequency $(50 \mathrm{~Hz})$. Control logic is implemented using Artix 7 FPGA based digital controller.

Fig. 7 Experimental setup DESIGN SPECIFICATIONS

Parameter	Value
IGBT	1200 V
Switching frequency	1500 Hz
Driver circuit	316 J
Transformer 1	$1: 1,2 \mathrm{KVA}$
Transformer 2	$1: 2,2 \mathrm{KVA}$

Fig. $8,9,10$ shows the output voltage waveforms of Bridge A, Bridge B and the inverter output respectively. Fig. 8 shows the output voltage waveform of Bridge A, which is in the form of quasi square wave and helps to give the dc offset of the Bridge B. Fig. 9 shows the Bridge B output voltage waveform symmetrical different levels to get maximum number of inverter levels. Fig. 10 shows the output waveform of the inverter which is the cascaded output of Bridge A and Bridge B and gives the 19-level output for ma=1.

Fig. 8 Output voltage waveform of Bridge A

Fig. 9 Output voltage waveform of Bridge B

Fig. 10 Output voltage waveform of Inverter

The study emphasizes the flexibility of the topology to generate several distinct levels with a maximum of 19 levels and a minimal number of switches. It is suggested to modify the carrier, which reportedly boosts switching frequency by two or three times. The output voltage becomes closer to the reference wave (a sinusoidal wave) as the number of levels rises, which causes the THD to shift to extremely higher order harmonics and reduces the filter size. There is no need for the filter if the load is inductive by nature. Megawatt drives, grid integration, ac traction, and electric cars all use it for speed control.

REFERENCES

1. Venkataramanaiah Jammala, Suresh Yellasiri, and Anup Kumar Panda, 'Development of a new hybrid multilevel inverter using modified carrier SPWM switching strategy', IEEE transactions on power electronics, vol. 33, no. 10, October 2018.
2. K. Feel-Soon et al., "Multilevel PWM inverters suitable for the use of standalone photovoltaic power systems," IEEE Trans Energy Convers., vol. 20, no. 4, pp. 906-15, Dec. 2005.
3. B. M. Reza, H. Khounjahan and E. Salary, "Single-source cascaded transformers multilevel inverter with reduced number of switches," in Proc. Power Electr., 2012, pp. 1748-53.
4. S.Behara, N. Sandeep, and R. Y. Uday kumar,"Transformer based seven level inverter with single-dc supply for renewable energy applications," in Proc. IEEE 7th India Int. Conf. Power Electr., 2016, pp. 1-6.
5. E.Babaei and S. H. Hosseini, "Charge balance control methods for asymmetrical cascade multilevel converters," in Proc. Int. Conf. Electr. Mach. Syst., 2007, pp. 74-79.
6. S.Sai Keerthi, J. Somlal, "Role of PI/Fuzzy Logic Controlled Transformerless Shunt Hybrid Power Filter using 6-Switch 2-Leg Inverter to Ease Harmonics in Distribution System", Indian Journal of Science and Technology, Vol.9, issue.23, pp.1-7, June-2016.
7. K. K. Gupta and S. Jain, "Topology for multilevel inverters to attain maximum number of levels from given DC sources," IET Power Electr., vol. 5, no. 4, pp. 435-46, 2012.
8. Manchalla Harshini Bhargavi, Jarupula Somlal, "Modeling and Analysis of Deadbeat Controller Based Split Capacitor DSTATCOM for DC Voltage Regulation", International Journal of Recent Technology and Engineering (IJRTE), Vol.7, Issue 6, March 2019.
9. T Vijay Muni, S V N L Lalitha, "Fast Acting MPPT Controller for Solar PV with Energy Management for DC Microgrid", International Journal of Engineering and Advanced Technology, Volume 8, Issue 5, pp-1539-1544.
10. Ravi Teja, S., Moulali, S., Nikhil, M., Ventaka Srinivas, B. "A dual wireless power transferbased battery charging system for electric vehicles". International Journal of Engineering and Advanced Technology 8 (4) ,pp.1211, 2019.
11. D. Ravi Kishore, and T. Vijay Muni, "Efficient energy management control strategy by model predictive control for standalone dc micro grids", AIP Conference Proceedings 1992, 030012 (2018); doi: 10.1063/1.5047963
12. K Venkata Kishore, T Vijay Muni, P Bala Krishna, "Fuzzy Control Based iUPQ Controller to Improve the Network of a Grid Organization", Int. J. Modern Trends Sci. Technol. 2019, 5(11), 40-44.
13. T Vijay Muni; Kishore, K.V. Experimental Setup of Solar-Wind Hybrid Power System Interface to Grid System. Int. J.
14. Sudharshan Reddy, K., Sai Priyanka, A., Dusarlapudi, K., Vijay Muni, T., "Fuzzy logic based iUPQC for grid voltage regulation at critical load bus", International Journal of Innovative Technology and Exploring Engineering, 8(5), pp. 721-725
15. Swapna Sai, P., Rajasekhar, G.G., Vijay Muni, T., Sai Chand, M., "Power quality and custom power improvement using UPQC", International Journal of Engineering and Technology(UAE) 7(2), pp. 41-43.
16. T. Vijay Muni, S V N L Lalitha, B Rajasekhar Reddy, T Shiva Prasad, K Sai Mahesh, "Power Management System in PV Systems with Dual Battery", International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 1 (2017), pp.:523-529.
17. T. Vijay Muni, G Sai Sri Vidya, N Rini Susan, "Dynamic Modeling of Hybrid Power System with MPPT under Fast Varying of Solar Radiation", International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 1 (2017), pp.:530-537.
18. T Vijay Muni, A Satya Pranav, A Amara Srinivas, "IoT Based Smart Battery Station using Wireless Power Transfer Technology", International Journal of Scientific and Technology Research, volume 9, issue 01, January 2020, pp:2876-2881.
19. Suhaib Muflih, Amin Halum, Tahir Bhinder, Mohammad Shawaqfeh, Jennifer Fore, Nour Chaar. "The Linkage between Amphetamine-Type Stimulants and HIV Sexual Transmission Risk Behaviors (TRBs): A Systematic Review." Systematic Reviews in Pharmacy 10.1 (2019), 93-98. Print. doi:10.5530/srp.2019.1.16 Modern Trends Sci. Technol. 2016, 2, 1-6.
