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Abstract 

 

In Graph theory, the line graph L(G) of undirected graph G is another graph L(G) that represents 

the adjacencies between the edges of G. Other terms used for the line graph are the covering 

graph, the edge-to-vertex dual, the conjugate, the representative graph, the edge graph, the 

interchange graph, the adjoint graph and the derived graph. 
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Introduction 

All the graphs considered in this paper are finite simple graphs. Terms that are not defined  here  

can  be  referred  from  D.B.  West,  Introduction  to  Graph  Theory, Prentice  Hall  of  India,  

2nd  Edition,  2001..Suppose  G=(V,E)  is  a  graph  and f : E 1,2,   ,| E |  is a bijective 
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mapping. For each vertex u of G, the vertex-sum  f u  at u is defined as  f u  

f (e) , where E(u) is the set of edges incident to u. 

e E (u ) 

If  f u  f v  for any two distinct vertices u, v V (G) , then f is called an anti-

magic labeling of G. A graph G is called anti-magic if G has an anti-magic labeling. The 

problem of anti-magic labeling of graphs was introduced by several authors. They proved that 

paths, 2-regular graphs and complete graphs are anti-magic and put forth two conjectures 

concerning anti-magic labeling of graphs. 

b-CHROMATIC NUMBER OF LINE GRAPH OF STAR GRAPH K1,n 

In this section, we study b-coloring of line graph of star graph K1,nand its chromatic number. 

Theorem: 

For every n, φ[L(K1,n)] = n. 

Proof: 

Consider the line graph K1,n . The line graph of K1,nis a complete graph with n-vertices. The b-

chromatic number of complete graph Knrequires n-colours for producing a b-colouring (fig 1.1). 

Therefore φ[L(K1,n)] = n. 

 

 

Figure 1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. b-CHROMATIC NUMBER OF LINE GRAPH OF PAN GRAPH 

In this section, we discuss b-coloring of line graph in pan graph and its chromatic number. 
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Theorem: 

 

The b-chromatic number of every line graph of pan graph is tricolourable. 

Proof: 

The n-pan graph is the graph obtained by joining the cycle graph Cn to K1with a bridge. 

Consider the line graph of pan graph. By the definition of the line graph, the vertex set of line 

graph of pan graph corresponds to edge set of the pan graph. 

Consider the line graph of pan graph, we see that every line graph of pan graph is a union of 

cycle Cn with K3. First we assign the colour to complete graph K3, by colouring procedure it 

requires three colours for producing a b-chromatic colouring. If we assign any new colour to the 

cycle Cn, then it does not produce b-chromatic colouring because the complete graph K3do not 

realizes the new colour. By the colouring procedure the b-chromatic number of every Line graph 

of pan graph is three and is maximum. 

A path partition of a graph is a collection of vertex-disjoint paths that cover all vertices of the 

graph. The path-partition problem is to find the path-partition number p(K) of a graph K , which 

is the minimum cardinality of a path partition of G. Notice that G has a Hamiltonian path if and 

only if p(K)=1 Since the Hamiltonian path problem is MP-complete for planar graphs 

Suppose every vertex v in the graph G is associated with an integer f(v) ∈ {0, 1, 2, 3}. An f-path 

partition is a collection P of vertex-disjoint paths such that the following conditions hold. 

 Any vertex v with pf(v) ≠2 is in some path in P. 

 If pf(v) = 0, then v itself is a path in P. 

 If pf(v) = 1, then v is an end vertex of some path in P. 

The f-path-partition problem is to determine the f-path-partition number pf (K) which is the 

minimum cardinality of an f-path partition of G. It is clear that p(K) = pf 

(K) when f(v) = 2 for all vertices v in K 

2. Path partition in graphs 

The labeling approach used in this paper starts from the end blocks. Suppose A is an end block 

whose only cut-vertex is x. Let B be the graph K − (V (A) − {a}). Notice that we can view G as 

the “composition” of B and A, i.e., G is the union of B and A which meet at a common vertex a. 

The idea is to get the path-partition number of G from those of A and B. In the lemmas and 
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theorems of this paper, we use the following notation. Suppose x is a specified vertex of a graph 

H in which f is a vertex labeling. For i = 0, 1, 2, 3, we define the function fi : V (H) → {0, 1, 2, 

3} by fi (y) = f(y) for all vertices y except fi(x)=i. 

Lemma 1 

Suppose x is a specified vertex in a graph H. Then the following statements hold. 

 

(1) pf3 (H) ≤ pf2 (H) ≤ pf1 (H) ≤ pf0 (H). 

 

(2) pf1 (H) ≤ pf0 (H) ≤ pf1 (H) + 1. 

 

(3) pf2 (H) ≤ pf1 (H) ≤ pf2 (H) + 1. 

 

(4) pf3 (H) = min{pf2 (H), pf (H − x)} ≤ pf (H − x) = pf0 (H) − 1. 

 

(5) pf (H) ≥ pf1 (H) − 1. 

 

Proof. 

(1) The inequalities follow from that an fj-path partition is an fi -path partition whenever j< i. 

 

(2) The second inequality follows from that replacing the path P in an f2-path partition by two 

paths P and a results an f0-path partition of H. 

 

(3) The second inequality follows from that replacing the path PaQ in an f1-path partition by two 

paths Pa and Q results an f0-path partition of H. 

 

(4) The first equality follows from that one is an f3-path partition of H if and only if it is either 

an f2-path partition of H or an f-path partition of H − a. The second equality follows from that P 

is an f0-path partition of H if and only if it is the union of {x} and an f-path partition of H – a. 

(5) Accordingto(1),(3)and(4),wehavepf(H)≥ 

pf3(H)=min{pf2(H),Pf(H−x)}≥min{Pf0(H)−1, P f0 (H) − 1} = Pf1 (H) − 1. 
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Lemma 2 

(1) Pf (G) ≤ min{Pf (A) + Pf0 (B) − 1, Pf0 (A) + pf (B) − 1}. 

(2) P f2 (G) ≤ P f1 (A) + P f1 (B) − 1. Proof. (1) Suppose P is an optimal f-path partition 

 

of A, and Q an f0-path partition of B. Then x ∈ Q and so (P ∪ Q) − {x} is an f-path partition of 

G. This gives Pf (G) ≤ Pf (A) + P f0 (B) − 1. Similarly, P f (G) ≤ P f0 (A) + P f 

(B) − 1. 

(3) The inequality follows from that if P (respectively, Q) is an optimal f1-path partition of A 

(respectively, B) in which P x ∈ P (respectively, xQ ∈ Q) contains x, then (P ∪ Q ∪ {P aQ}) − 

{P a, aQ} is an f2-path partition of K. 

3. Special blocks: 

Notice that the inductive lemma can be applied to solve the path-partition problem on graphs for 

which the problem can be solved on its blocks. In this paper, we mainly consider the case when 

the blocks are complete graphs, cycles or complete bipartite graphs. Now, we assume that B is a 

graph in which each vertex v has a label f(v) ∈ {0, 1, 2, 3}. Recall that f (i) is the set of 

preimages of i, 

i.e. f (i) = {v ∈ V (B) : f(v) = i}. 

According to Lemma 1, we have Pf (B) = Pf(B − f −1 (0)) + |f −1 (0)|. 

Therefore, we may assume without loss of generality that f −1 (0) = ∅ throughout this section. 

We first consider the case when B is a complete graph. The proof of the following lemma is strai 

ghtforward and hence omitted. 

Theorem : For n 1, the corona product K1,n K2  are anti-magic. 

Proof: Consider a star graph K1,n , n  1along with its anti-magic labeling  . For the 

convenience, let v be the central vertex of K1,n and let us name the edges of K1,n as e1 , e2 , , 

en  in such a way that ei  i, for 1  i  n . That is, arrange the edges of K1,n as 

per the increasing order as defined by the anti-magic labeling  . From the definition of anti-

magic labeling, the vertex label of a vertex v V K n  is defined as the sum of the edge 

labels of edges that are incident with vertex v. Let us arrange the vertices of K1,n as v1 , v2 , , 

vn , v as per the increasing order of their vertex labels. Since star graphs K1,n are anti-magic, this 

arrangement of vertices and edges are possible. In the corona product K1,n K2 , let us name the 

edges as follows: For the ith vertex vi of K n , 1  i  n, let the edge of K 2 be ui wi by 
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considering the vertices of the corresponding copy of K 2 as ui and wi . Then, the edges between 

K1,n and K 2 are denoted as ui vi and wi vi . Similarly, because of the corona product, for the 

corresponding copy of the central vertex u, the edges added between the central vertex v and the 

end vertices of K 2 be u and w. The newly added edges be vu and vw.  

Now, let us define the edge labels defined by the function  . For the original edges of 

 

K1,n 

 ei  3 n 1  i, 1  i  n . 

 

For the newly added edges in the operation of corona product, we define: 

 

 uw  1 

 

 vu  2 

 

 vw  3 

 

 ui wi  3  i, 1  i  n 

 

 ui vi  3  n  i, 1  i  n 

 

 wi vi  4  n  i, 1  i  n 

 

It is clear from the definition of  , edge labels of edges of K1,n K2 are distinct and the edge 

labels are from the set 1,2,3, ,4n  3 . It is easy to observe that the vertex 

 

sum of vertices of K2 defined by  form a monotonically increasing sequence as follows: 

 

u , w , u1 , w1 , u2 , w2 ,

 ui , wi ,

 un , wn ,  followed  by 
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the sequence v1 , v2 , , vn , v . 

  

Therefore, vertex sum defined by  for the vertices of K1,n K2  are distinct. Thus, for 

n 1, the corona product K2  are anti-magic. 

Figure 2-Anti-Magic labeling of K1,6 K2 . 
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