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Abstract

This paper introduces the notions of realizability and minimum realizability criteria for a
matrix dynamical system of first order, considering a zero initial state, on time scales.

1. Introduction

The significance of matrix dynamical systems resembling the Riccati equation is widely
acknowledged, as they find applications in diverse fields of applied mathematics, including
control systems, dynamic programming, optimal filters, quantum mechanics, and systems
engineering. This paper is centred around two principal goals: [1] advancing the theory and
methodologies for solving dynamical systems on time scales, and [2] investigating realizability
techniques. The primary emphasis of this paper revolves around matrix dynamical systems of
Riccati-like nature on time scales, specifically in the format of[3]:

Xﬂ(r) = A X (O + X () B() + u() A(H) X () B(f) + C{r}U{r}DH M, X)) =Xy (1.1)
Y (1) = K{®)X(t) L* (1) (1.2)

If the time scale T = R, the system (1.1) becomes Sylvester matrix differential system of the
form

X2 =AD X+ X(O) B +CHUDHD " (1) (1.3)
AX(t) = A(f) X (1) + X () B(t) + A(H) X (1) B(t) + C(HU(t)D ’ () (1.4)
X(t+1) = A (X0 B () +COUOD " (1) (1.5)

2. Preliminaries

Significant progress has [4]taken place since 1988 in consolidating the theories of differential
equations[5] and difference equations by achieving parallel [6]outcomes within the
framework of time scales[7]. For more comprehensive insights, you can consult the
references provided in books [8].

Definition 2.1

A nonempty closed subset of R is called a time scale[9]. It is denoted by T. By an interval we
mean the intersection[10] of the given interval with a time scale[11].
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Theorem 2.1 Assume f:7— R is a function and let t€T*. Then we have the
following:

(i) If f is differentiable at ¢, then f is continuous at .
(ii) If £ is continuous at ¢ and ! is right-scattered, then f is differentiable at ¢ with
fle())- £
o
(iif) If ¢ is right-dense, then f is differentiable at ¢ iff the limit
L PO =1(9)

=% [—s

20 =

Exists as a finite number. In this case

£ () =lim M

s s
(iv) If £ is differentiable at t, then

fle(®) = f(O)+ u(t) £ ).
Result 2.1 If A B € R are matrix-valued functions on T, then
(i) ¢, (t,s) =Tand ¢, (t,0) =1,
(i) ¢,(c(0).s) = (I+u()A@) ¢,(t9):
(i) ¢ (. 9) =g, (&.9);
i) 6,69 =67 (5.0 =6, (5,0; (V) §,(6.90,(s.)= ¢, (1) ;
i) @, (L 8) s (t, 5) =05, 5) if ¢, (¢, s) and B(t) commute.

Theorem 2.2 [2] Let A R be an nx n-matrix-valued function on T and suppose that

f:T— R" is rd-continuous. Let f, €T and y, € R". Then the initial value problem
YO =A0y0+ 0. yt) =y

Has a unique solution y: T — R .Moreover, this solution is given by

YO =@, (.t v, + [ 8, (t.0(D) F(D)AT

]
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The Kronecker product has the following properties and rules.
, (A®B) =A"®B’

, (A® B)"' =A™ ® B™' (provided A and Bare invertible )

3. The mixed product rule (A®B)(C ®D) =(AC®BD) . Provided the dimensions of the
matrices are such that the various expressions exist.

a|aeB| =|A||B]|

5. Vec(AYB) = (B ® AVecY

6. If A and B are matrices both of order nx n then
(i) Vec(AX) = (I, ® A) VecX
(ii) Vec(XA) = (A" ® I,) VecX

Let A and B are rd-continuous matrices on time scale T, then

(A®B)2 (1) = A () ®BW) + Alc) ® B> ()
Now by applying the Vec operator to the A-differentiable matrix dynamical system (1.1)
also the output equation (1.2) and using Kronecker product properties, we have
Z2 () =GO ZWO+[DOCIUW:  Z(ty) = Zy: (2.1)
Y(6) =[L® K|Z(2) (2.2)
Where, Z(t) = Vec X(t). U() =Vec U(t) , ¥(1) =VecY (t) and

G() =[B ® I+ I® A+ u(0)(B ® A)], is a n’xn’ matrix. Let A(t) and B(t) be regressive
and rd-continuous.
From the definition of Kronecker product G: T¥ —R™ is regressive and rd-continuous.

System (2.1) and (2.2) is called the Kronecker product system associated with (1.1)
and (1.2).

Remark 2.1 It is easily seen that, if X(t) is the solution of (1.1) then VecX(t)= Z(t) is the
solution of (2.1) and vice-versa.

Now we confine our attention to corresponding homogeneous matrix dynamical system
on time scales (2.1) given by

Z* () =GO Z( (2.3)

3. MAIN RESULTS
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In this section, [12]we discuss realizability and minimal realizability for the matrix
dynamical systems on time scales[13]

Definition 3.1 The A-differential systems S; given by (2.1) is said to be completely
controllable if for to, any initial state ~ Z(tg) = Zy and any given final state Z; there exists

a finite time t1 > to and a control U(f),t, <¢< ¢, such that  Z(t;) = Z; .

Lemma 3.1 [12]The time scale dynamical system S; is completely controllable on the
closed interval J = [to, t1] if and only if the n® x n” symmetric controllability matrix

4 = =
Vitg. ) = [¢(t5.0(s) (DB C)()(DRC) ()¢ (t9.0(s))As (3.1)
fy

Where ¢(¢, 5) is defined in (2.4), is non-singular. In this case the control
U0 =—~(D®C)" (04 (tg.o(NV ™" (4. 4){Zg —Pleg. &) Z } (3.2)

Defined on ¢, <t <t transfers  Z(tg) =Zy to Z(t;) =2

Theorem3.1 A realization exists for a matrix R(t,s) if and only if it can be expressed in
the form

R(t. s)=P()Q(s) (3.7)

Where P and Q) are matrices having finite dimensions

Proof: Suppose R(t, s) posses a realization, then (3.6) exists and
R(t,5) = (L® K)p(t,0(s)(DD C)(s)

=(L® K){g,(t .o(s) @ (t .o(s)} (DB C)(s)
=(LO®K){X, (0 X,” (c(s) @ X, (0 X,” (6(s)}(D® O)(s) \
= (L® K){(X, () ® X, (0)(X,” (6(s)) ® X,” (c(s)) }(D® C)(s)
=P()O(s).

Where,

X1 and Xz are fundamental matrices of the systems X*(t) = A()X(t) and X*(t) = B ()X (t)
respectively,

P(t) = (L®K){(X, () ® X, (1) and Q(s) = (X, (c(s)) ® X, (a(s))}(D® C)(s). Hence
(3.7) is certainly a necessary condition.

Conversely, if (3.7) holds R(t, s)= P()Q(s)= P().2Q(s) this implies that @(z,s) =1, .
then a realization of R(t, s) is {Onz, Q(t), P(t)}, where Onz denotes an nXn® null matrix.
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