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Astract 

 

Our ancestors around the turn of the 20th century put tremendous effort into formulating 

mathematics as an axiomatic system of thought. The art has since then offered to anyone 

who wished to cultivate it the luxury of laboratory  conditions,  free of  the imperfections 

of the surrounding world. Many of the problems mathematicians  have worked on since 

that time have of course been inspired by ”real-world” phenomena, but most results are 

formulated in a sterile environment, and anyone who wants to apply them rigorously must 

see to it that the necessary axioms are upheld. 

Statistics is far less pure. True, there are  beautiful  statistical  results  in  the  litera- 

ture, but it is by  nature an  applied  branch of  mathematics,  and as  soon  as  it  is  used 

for investigating a non-trivial problem, several questions arise. How to take an unbiased 

sample, for instance, can easily turn into a difficult problem, just as the question of what 

statistics to use for finding relevant patterns in the input data set. One needs only to think 

about, say, sociological studies to see how these seemingly minor questions influence the 
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conclusions one might draw through ”scientific” means, and might thus contribute to 

misunderstandings about the world we live in. 

Introduction 

 
That arises most likely from the general perception that statistics is a toolkit for proving 

 
disproving certain statements through numbers. In other words, its main function is pattern 

matching. That is of course correct if one considers statistical work to be only parameter 

estimation and hypotheses testing, as it is taught in most schools. But to the  more 

motivated student, it is an art of pattern finding, rather than matching, and one can apply 

these methods in areas that go far beyond the realm of mathematics. That is very  broad, 

but that is exactly the point: we learn to learn how to find some order in chaos, while 

relying as little on our (usually unreliable) perceptions as possible. 

Some of the hidden patterns are easily guessed if there is some information about the 

data. For example, financial stock information should likely be affected by company sector 

and size. Behavioral patterns should relate to an individual’s family background, their 

ability to speak foreign languages, and so on. But what other, non-trivial hidden patterns 

are there that might cluster the data? How should we go about finding them? How should 

we treat them? Several questions, without a universal answer. A particular set of tools may 

answer a particular mathematical problem, but in practice it is often very difficult to 

understand the meaning of patterns, when one gets to examine new data. 

This study itself concerns investigating random graphs. Our ultimate aim would be to 

set up a graph lab where all possible random graphs in the world are classified according 

to some properties deemed generally important. But that is the work of a lifetime, and goes 

far beyond the scope of this dissertation. We will only list a number of properties that seem 

relevant for most graphs, and then proceed to a careful investigation of a relatively narrow 

area. 

The amount of previous statistical work on graphs pales in comparison to graph theo- 

retical work, but it does exist. Aldous has been a pioneer in the field (see for instance [1], 

or more on his web site), with recent results on noisy graphs by Bolla ([5]), on parameter 

estimation by Bickel and Chen ([4]), on the spectral properties of graphs generated by the 

threshold model by Ide, Konno and Obata ([35]), and others. 
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The structure of the dissertation is as follows. In the next chapter we will introduce 

some earlier results on plain Erdős-Rényi and power-law graphs, then proceed to investigate 

methods that are useful for the statistical analysis of graphs. Then from chapter 4 onward 

we will focus on the following problem (indeed, our main problem): it has been established 

that if a graph is built up via some so-called ”preferential attachment” mechanism, thenit 

will have a power-law degree distribution. The reverse implication is generally taken for 

granted, but it is not so clear. In fact, it is so not clear that we will show in chapters 4 and 5 

that it fails completely. In chapter 5 we will introduce some random graph models that 

produce power-law distributions, but this work will really be crowned by chapter 6, where 

we build a model that creates uniformly distributed graphs given a degree sequence. 

[S] Random graph theory started in 1959 with a series of papers by P. Erd˝os and 

 
A.   Rényi   ([30],   [29],   [31]).     They   introduced   two   models   with   very   interesting 

properties, but the graphs generated by these models were inadequate for describing some 

networksobserved in real life. Networks became an area of intense research in the 1990s. 

Watts and Strogatz introduced a so-called ”small world” model in 1998 ([57]), which 

aimed to  modify  the  Erdős-Rényi  models  to  better  describe  existing  networks.   In  1999, 

Albert  and Barabási  proposed  a  mechanism  for  building  graphs  that  closely  resembled 

real networks ([2]), notably in the power-law degree distribution. The publication was soon 

followed by another  in  similar  vein,  this  time  by  Albert,  Barabási  and  Jeong  ([3]).   The 

term ”scale-free graph” was invented to describe graphs with such a distribution. 

In this chapter we will introduce some of the major results in the field of random graph 

theory,  with  special   attention  to  Erdős-Rényi  (”ER”)  and  Albert-Barabási  (”AB”) 

model graphs. 

 Degree distribution 

 
In Gn,p, the edges leaving a given node v are generated by n − 1 flips of a p-probabilitycoin, 

therefore: 

P (d(v) = k) = 
n − 1 

p
k
(1 − p)

n−1−k
. 

k 

For n → ∞ and np → λ > 0 constant, the degree distribution is Poisson: 
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and 3 : 

−2 

 

 

 

 

 

 
 Diameter 

(np)
k
e

−np
 

P (d(v) = k) = . 

k! 

 

The diameter of a graph is  defined  as  diam(G)  =  max{d(v, w)|v, w  ∈  V (G)},  where 

d(v, w) is the length of the shortest path between vertices v and w. If G is not connected, 

diam(G) = ∞ by definition. 

The diameter is a monotone function on graphs, i.e.   if G and H are graphs with 

V (G) = V (H) and E(G) ⊂ E(H), then diam(G) ≥ diam(H). 
 

Bollobás shows in [7] that for a sufficiently dense graph G ∈ Gn,p 

 

 
 

diam(G) 

= 

log n + log log n + log 2 + O(1/ log 
 

 

n)log pn 

 

 

almost surely. Specifically, for c = 
d    d−1exp(p  n 

n 

 

2 

  pn  

→ ∞ 
(log n) 

 

 

 

 
and 

c 
 

lim P (diam(G) = d) = e , 

n→∞ 

c lim P (diam(G) = d + 1) = 1 e 2 .n→∞ 
 

— − 

 Chromatic number 

A proper vertex-coloring, or, for short, ”coloring” of a graph G is a coloring on the graph’s 

vertices such that any pair of adjacent vertices have a different color. The chromatic 

number of G is defined as the smallest number of colors required for coloring G, and is 

usually denoted as χ(G). 

Regarding Gn,p, we must distinguish between dense and sparse graphs.    There is a 
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stronger estimate available for dense graphs, but it fails for low edge densities. 

First, the dense case.  Suppose G ∈ Gn,p, p > n
−λ

  ∀λ > 0 and let b = 
1
   .  McDiarmid’s 

1−p 

1989 result ([47]) shows that in this case 
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2 log np − 40 log log np 

  .  

2 logb n − 2 logb logb n + OC(1) 

This result was an improvement upon earlier results of Shamir and Spencer ([53] and 

Bollobás ([8]). 

In case p tends to zero too fast, the considerations that led the above result are not 

applicable.  Using Frieze’s argument ([32]), L- uczak was able to provide bounds in the sparse 

case in his 1991 paper ([44]). 
 

∀G  ∈  Gn,p, ∃C0   such  that  ∀p  =  p(n)  with  p  enclosed  in  the  range  
C0 

n 

 

≤ p ≤ log
−7

 n, 
 

then asymptotically almost surely 

np np 

2 log np − 2 log log np + 1 
≤ χ(G) ≤ .

 

Note that for higher values of p, the previous estimate gives stronger bounds. 

 Subgraphs 

The  famous  1960  paper  by  Erdős  and  Rényi  ([30])  discusses  the  subgraph  containment 

problem at length. They provide threshold conditions for a random graph for containing 

certain small subgraphs. Namely, they show that: 

If k ≥ 2 and k − 1 ≤ l ≤  
k 

2 are positive integers, and βk,l  is an arbitrary non-empty 

class  of  connected  graphs  with  k  vertices  and  l  edges,  then  ∀G ∈ Gn,m   (or  G ∈ Gn,p   with 

|E(G)| = m): 
 

 
P (∃H  ∈ βk,l  : H  ⊂ G) 

= 

0, for m = o(n
2−

 
kl     

) 

 

 
up to isomorphism over βk,l. 

 
Simple substitution yields that 

1, otherwise 
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k
−  
2 

• the threshold that G contains a tree of order k is nk−1 , 

 
• the threshold that G contains a connected subgraph H with |V (H)| = |E(H)| = k 

for arbitrary k ≥ 3 is n, 

 
• the threshold that G contains a cycle of order k for any k ≥ 3 is n, 

 

 

2k  
−
4 

• the threshold that G contains a clique of order k for any k ≥ 3 is n k−1 . 

 
 The  Albert-Barabási  model 

 
A quote from the 1960 Erdős-Rényi paper ([30]):  ’It seems plausible that by considering the 

random growth of more complicated structures (e.g. structures consisting of different sortsof 

”points” and connections of different types) one could obtain fairly reasonable models of 

more complex real growth processes (e.g. the growth of a complex communication net 

consisting of different types of connections, and even of organic structures of living matter, 

etc.).’ 

It seems the authors understood that the random graph models they worked with had 

their limitations as far as practical applications were concerned. Over the next decades, 

”real-life” networks were occasionally studied in detail, but it took until the 1990s that 

research sped up dramatically. 

It  became  clear  in  many  of  these  cases  that  the  Erdős-Rényi  model  cannot  provide  an 

adequate description. The reason is instantly obvious: the degrees in the ER models have 

identical expected values, with a very narrow degree distribution. Many real-life networks, 

however, seem to carry a few degree-rich nodes and many degree-poor ones. So it seemed 

natural to investigate broader distributions, such as 

 
P (deg(v) = k) ∼ k−λ

 for some λ. 
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Albert,  Barabási  and  others  found  that  this  so-called  ”power-law”  distribution  held 

well across a host of different real-life networks, for example: 

• Collaboration graph for movie actors. Actors are represented by the nodes, and two 

nodes are connected by an edge if the corresponding actors have collaborated in a 

film. In this graph, λactor = 2.3 ± 0.1. 

• The World Wide Web. Each vertex represents a document, with a (directed) edge 

runs between them if one document has a link to the other. They found that λWWW = 

2.9 ± 0.1. 

• The electrical power grid of the western United States. The vertices are generators, 

transformers, substations and the edges are the high-voltage lines between them.λpower ≈ 

4 fit well. 

• Scientific citations. The vertices are publications, the (directed) edges are references 

between them. It was found that λcitation = 3. 

• The number of sexual partners on a Swedish sample by Liljeros et al. ([43]). The 

study settled for λmen ≈ 1.6 and λwomen ≈ 2.1. Their data suggests (again!) that men 

have more partners than women. And here we are, writing about graphs whoseedges 

are supposed to have two end vertices... 

All  the  above  results  are  cited  from  Albert  and  Barabási  ([2])  or  a  reference  therein, 

unless otherwise noted. 

Albert  and  Barabási  pointed  at  two  observations  about  such  networks.    First,  that 

their vertex set generally grows over time, so any model that aims to describe them should 

consider the mechanism of how a new vertex is introduced to the system. And second, 

that a newly added vertex is more likely to connect to vertices that are already degree- 

rich. These two considerations motivated them to develop a model that leads naturally toa 

power-law distribution. 

We  will  now  describe  the  original  Albert-Barabási  model,  and  reproduce  the  authors’ 

heuristic computations. In the next chapters we will provide a paraphrased version and 

analysis. 
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Merits and dangers - politics 

The popularity of the model inspired a lot of research, most of it outside mathematics.It 

is perhaps not impolite to say that an entire industry has been built up on scale-free 

networks.   Numerous  scale-free  models  have  been  introduced  since  Albert  and  Barabási’s 

first paper on the subject, not the least by these same authors. These models are slight 

modifications to the original, to explain phenomena not contained in earlier versions, like 

how a late-comer might be able to attract neighbors at an exceptionally high rate, and so 

on. 

The existence of such broadly applicable mathematical theory provides strong guidelines to 

researchers across many fields, and thus inspires work. This is welcome. True, much of 

what is understood by those who apply it is just a formal version of common sense. 

One does not need highly developed theories to understand that the spread of signals in 

relatively centralized real-life networks depends largely on the central nodes, which means 

the Internet’s backbone hubs need to be strongly protected, information / diseases spreads 

faster on them, etc. But having such models can be helpful in quantifying properties of 

such networks. 

The process is not without dangers, however. The models tend to work with the 

assumption that scale-free distributions express something about a hidden law of nature. In 

the quest of understanding and describing the world, one is often tempted to turn to 

simplifications, and the existence of such universal assumptions might lead one to explain 

phenomena within the scale-free framework even where it is inappropriate. E.F. Keller 

([39]) and others find this worrying. It is hard to argue against some of the criticism: 

forcing a scale-free uniform on too wide a range of networks should not become a world 

religion. But even if some think these models are weak or irrelevant, they do describe the 

growth of certain networks quite well. We will show that the model has well-defined 

connection properties, and since says something meaningful about certain real networks,its 

existence is justified. 

Thus, it inspires the student to hammer out the model’s weaknesses, rather than to discard 

it altogether. 

Let us now look at some of the basic properties of scale-free graphs. 
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( = (2k) . 

k 

 

 Connectedness 

Denote the number of components of a graph G by C(G). In the AB model, the addition of 

a new vertex does not increase the number of components, C(G0) ≥ C(Gt), ∀t ∈ {1, 2, . . . }. 

Thus, if G0 is connected, so will be Gt. 

Suppose C(G0) = k. For m = 1, ∀t ∈ {1, 2, . . . }, C(Gt) = k, since each new vertex 

connects to exactly one component. For m > 1: let {Hi} denote the components with 

 

Σv∈H1 dv ≥ · · · ≥Σv∈Hk  dv  ≥ 1.  Let  Aj(t)  be  the  event  that  H1  is  connected  to  Hj  at 

time t, and Aj the event that they are ever connected (j = 1, . . . , k). These two components 

would be connected only if a vertex connected to them both, thus 

 

 

P (A (t)) ≥
   1 mt 

· 
  1  

)
m−1

 
k −m

 

j ∞ ∞ 

j ct ct +Ya 
t=t0 aP=1(A  ) ≤ 

ct − 1 
Y ct − 1 + a 

≤ ( 

 
)

1/c
 → 0. 

 

 

Denote c = 2km 
 

. Then 

That holds for all j = 2, . . . , k, thus if the graph is 

large enough, it will be connected.Indeed, an AB 

graph is disconnected only if m = 1 and C(G0) > 1. 

2mt 

k 

2mt t 
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 Degree distribution 

 
Albert and Barabási’s estimate (P (deg(v) = k) ∼ λ−3

.  Dorogovtsev, Mendes and Samukhin 

show in [24] that for an AB graph with m edges added in each step: 

 

2m(m + 1) 

P (dv = k) = 
k(k + 1)(k + 2) 

.
 

 
Bollobás,  Riordan,  Spencer  and  Tusnády  have  a  similar,  but  stronger  result  for  0  ≥ 

k ≥ n
1/15

 in [12]. 
 

The popular notation for the above is 

 

 

P (deg(v) = k) ∼ k−3
, 

 

for a randomly selected vertex. 

Methods, considerations 

[T] In this chapter we will give an overview of some of the considerations for evaluating 

graphs. We cannot afford to go into great detail about all of them – some of what is written 

here can simply provide the basis or motivation for future work. 

We will use some of these methods in the later, more numerical part of the dissertation, 

here we wish to focus more on the philosophy. We believe the learning process is like 

chasing butterflies: butterflies are fast and elusive. Even if we manage to catch one, we 

might kill it, and what is the value of a dead butterfly? Still, we learn from the process, and 

that might be more important than finding answers. Over time, the answers will start 

coming... 

The list we provide below is of course incomplete, but we hope the reader might find some 

of it not only helpful, but also inspiring for further work. 
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Models, likelihood,  Neyman-Pearson 

Statistics education tends to focus on two areas: parameter estimation and hypothesis test- ing. 

What is often not mentioned, because it is implicit in the former, is model estimation. 

Statistical data is always assumed to be generated by some model, and the parameters are 

basically parameters for that model. True, for simple models this distinction may not be 

necessary, but it would help students learn to be more critical with data. 

So once we have settled for a model, we can look at the graph realization and try to 

derive its likelihood as per the model. This can be a very difficult task, if the model is 

complex (and graphs are reasonably complex), but there are great rewards if the attempt 

bears fruit. First, different realizations are comparable, and second, by the Neyman- 

Pearson lemma, different models are comparable. In practice, this means that we can make 

perturbations on the original data, and if the likelihood function changes significantly asa 

result of the perturbation, we have found something through a test of maximum power. 

While this is not always achievable, it is a nice ideal to follow. 

Degree distribution 

The degree distribution is a property typical of every graph. There are numerous ways 

of comparing the empirical distribution and theoretical distributions. In practice these 

methods often aim at transforming the data in a way that a line should fit it well. For 

instance, the following approach is apparent in the original Albert-Barabási paper ([2]): 

Suppose P (d = k) ∼ k−λ
. Then 

 

log P (d = k) = −λ log k + b, 

 
 

so log P (d = k) should form a line with slope −λ as a function of log k. 

 
In practice, many of the real-life graphs cited as scale-free show this linear relationship 

only in mid-range, and fail to fit near the head and tail of the distribution. More seriously, 

while the expected degree distribution associated with a random graph model might be 

known, the probability distribution of individual vertex degrees might not be identical, so 

as much as a nice picture might lead us to think we found a fitting, we should remain 

skeptical. So we are tempted to find some alternative methods for fitting distributions. 
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Labeling 

Some graphs, like those from an AB model, evolve in time, and therefore have a natural 

labeling. These models may assign edge probabilities conditionally independently in every 

step, and thus reconstructing the original labeling would mean we can attain an accurate 

likelihood value for the graph. This motivates us to examine the problem of labeling. 

The most natural idea, to consider all possible labelings and pick one according to some 

constraints, say, maximum likelihood, are computationally unrealistic. So it is clear that 

for a general degree distribution, we are helpless about this problem. 

So let us consider scale-free graphs, and say our graph G(n, m) is from the AB model. 

The general tendency in these graphs is that the earlier a vertex is connected, the higher its 

degree.  Móri  shows  in  [49]  that  even  as  n → ∞,  the  maximum  degree  node’s  identity will 

change only a finite number of times with probability 1. Naturally, this must hold true for 

the subgraph generated by vertices {i, . . . , n}, regardless of the choice of i. This implies that 

for any fixed i and an arbitrary j > i, only O(1) of these pairings will be such that di < 

dj, out of O(n) choices for j as n → ∞. Thus, labeling the vertices in decreasing order by 

their degree is a negligible deviation from the original labeling. 

We will use this as a general method: anytime we are to examine a scale-free graph 

whose nascent vertex order is not known, we will start with sorting the vertices by their 

degree. Note that this method is not applicable in general, but it does work for scale-free 

graphs. 

3.1 Preferential attachment 

 
[S] The term preferential attachment refers to a graph construction mechanism where 

every time a new vertex is joined to the graph, its neighbors are selected by some kind of 

preference function. Namely, if we wish to join vertex v to graph G to form GJ, we will 

have 

 
∀w ∈ V (G) : P ((w, v) ∈ E(GJ)) ∼ f (deg(w)). 

 
This is a paraphrased form of the following urn process: let urn k (Ak) represent the 

degree of vk. In step t of the process, some balls are picked from urns 1, . . . , t − 1 with 
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probabilities proportional to f (A1), . . . , f (At−1), and exactly as many balls are added to 

urn t. 

Krapivsky, Redner and Leyvraz showed in [41] that for 

 
 

• f (k) = k
a
, with a < 1: P (deg(v) = k) ≈ ck

−a
 exp(−ck

1−a
), 

 
• f (k) = k

a
, with a > 1: the resulting graph will have one vertex with degree of order 

t, others O(1), 

 
 

• f (k) = a + k, with a > −1: P (deg(v) = k) ∼ ck
(−3+a)

. 

 
It is a task in itself to tell if the model that built a graph included preference consid- 

erations, so estimating f might be very difficult. But without a proper estimate for f , we might 

not be able to have an accurate likelihood estimate. For likelihood computations, we will 

assume the simplest of preferential attachment models, namely f (k) = k, and show that it is not 

too great a sacrifice. But for this reason we will be using the term ”pref- erential 

attachment” loosely, pointing to a sequential model’s property that higher degree vertices 

have greater strength in attracting neighbors, and not require f to be linear. 

 
Clustering 

 
 

[T] Clustering on a graph is, in the broadest sense, a partition on the vertex set. The 

term ”clustering” is typically used for a partitioning where vertex groups are formed froma 

set of vertices that are in some sense similar. It is important to note that this is onlyone 

of the possible ways to approach the subject of clustering. 

One can also define partitioning in terms of cross-cluster behavior. The criterion for a 

vertex to belong to a cluster could be its distance to vertices in other clusters (according 

to some distance metric), or by some other regularity property. 

To illustrate the difference, consider a graph with some distance metric defined over it, say, 

a real-world map. Clustering by geographic location is of the first type, and by thevertex 
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degree is of the second type. 

 
Let us briefly discuss these two approaches. 

Clusters of ”similar” vertices 

 
 

This approach has very rich literature, so there is no need to go into technical details. The 

only consideration we can add is how to define a distance metric that is relevant for our graph. 

Hamming distance is one metric that comes to mind automatically, another one isthe one 

implied by the process of drawing up the graph, where a metric space is set up automatically. 

The list could go on. 

If we do not want to make a conscious decision on the metric space, we might want to 

set up some constrained process, and let the vertices find their own place, hoping there is a 

stationary state. For instance, we could randomly distribute the vertices along a spherical 

surface, and view edges as gravitational forces that pull the end vertices together. The 

surface is automatically metric, so once the stationary state is reached, clustering becomesa 

trivial problem. 

There is no immediate summary of what this might do to a particular graph, it depends 

on the surface and the dynamic process, but once we have applied the method to a wide range 

of graphs, some of their properties might just stand out. And over time, one will develop an 

intuition for the features that seem relevant. 

Microstructures 

”The devil is in the details” - the saying goes. One approach to understanding a graphis 

through its small subgraphs, which are not always diabolic. These are easy to grasp both 

analytically  and  computationally.   Borgs,  Chayes,  Lovász,  T.  Sós  and  Vesztergombi 

have two elegant papers about the subject ([14], [13]), where they introduce a notion of 

convergent graph sequences based on small subgraphs. 

If we are able to compute some asymptotic subgraph properties of a hypothesized graph 

model, we might use this as part of a test on the graph we are examining. This so-called 

”containment problem” is often an easy task, since it involves small subgraphs. Section 

2.1.6 has a demonstration of some basic results for Erdős-Rényi graphs. 
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Distances, metrics 

Given two general graphs, we might want to know how ”similar” they are. This becomesa 

very difficult problem if these graphs are not labeled. There are some fast algorithms finding 

isomorphism between trees, and that means one can come up with a tree-to-tree distance 

metric with some effort, but the same does not hold for general graphs. 

The graph isomorphism problem is known to belong to NP, but it is currently unknown 

whether it is NP-complete or not. The subgraph isomorphism problem is in fact NP- 

complete ([56]). That means coming up with a practical graph distance algorithm is by no 

means a trivial matter. 

Non-trivial does not mean unsolvable: Frieze and Kannan introduced a cut or rectangle 

distance in [33]. This distance satisfies all conditions for being a metric. The graph 

convergence  idea  developed  by  the  Borgs,  Chayes,  Lovász,  T.  Sós  and  Vesztergombi 

articles mentioned in the previous section lay the groundwork for metricization. These 

ideas are very complex computationally, but the idea of a metric appears there. That 

implies a small rank graph that can be partitioned into a low number of clusters can be 

easily metricized in practice. 

We have now introduced some general methods for examining graphs. Let us proceedto 

our main problem. 

Conclusion 

In the process of coming up with these results, we stumbled upon some open questions, 

which might be interesting subjects for further research. These are: 

• Edge swap mixing times. 

 
P.L.   Erdos,    I.   Miklós   and   L.   Soukup   proved   in   [26]   that   graph   G(n) 

approaches uniform distribution on its degree sequence class under the swap operation in 

P oly(n) time, if it is bipartite semi-regular. We think the statement is expandable, 

quite possible to all non-directed graphs, but currently this is not proven. 

• Uniform generation. 

 
There are many publications on how to generate graphs with a specific degree se- 

quence with uniform distribution. To the best of our knowledge, this all use some 
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branching process, or edge mixing (e.g.  swaps).  Now, given a graphic sequence 

{d1, . . . , dn}, model V will generate all graphs with this expected degree sequence 
 

with identical probability. This implies that it might be possible to use this model 

for generatic graphs with a prescribed degree sequence from the uniform distribution 

from that degree sequence class. This might involve some iterative process that can 

remove as well as add edges. Currently we do not see the distribution of the indi- 

vidual degrees generated by the model, and do not have a solution for this problem, 

but we find it inspiring. 

• The boundaries of the convex hull. 

 
We have stated that the maximum likelihood equation is solvable on the interior of 

the convex hull identified in section 6.1. What happens on the boundary? 

• Perturbation vs. edge swaps. 

 
For models I through IV/IVa, the graphs’ likelihood changed more under urn matrix 

perturbations than edge swaps.  This implies that given a graph, there is a limit to 

how much its preference structure can be altered by rewiring the edges, and suggests that 

there is a lower bound on how much information the degree sequence containsabout 

the graph’s connection structure. The question requires further study. 

• Urn likelihood and swaps. 

 
Given the fact that swaps on graph  G had a notably stronger effects on the value 

S(G) when G was directed, one would naturally expect to see the same with the urn 

likelihood. But the results begged to differ. This is counterintuitive, and should be 

revisited. 

• Applications. 

 
So-called ”heavy-tail” or ”fat-tail” distributions have gained much popularity in re- 

cent years, in areas as far apart as finance and biology. In some of these cases, thereis 

an underlying network model, but far from always. History shows that graph the- ory 
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was able to produce some beautiful solutions for problems that had nothing to do 

with graphs.  It is  a natural idea to investigate whether one can devise a random 

graph mechanism for a heavy-tail distribution even in the absence of a network. Ex- 

amining Zipf’s law about the frequency of words in a language might be an interesting 

starting problem. 
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