
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 

Research Paper © 2012 IJFANS. All Rights Reserved,  Journal Volume 10, Iss 11, 2021 

 

510 

 

EXPLORING CHEMICAL REACTION SYSTEMS: HOMOCLINIC 

BIFURCATION AND THE INVERSE PROBLEM 

1B R.Srinivas,2S. Ammaji,3A. Srinivasa Rao,4B. Raju 
1Professor & Vice Principal,2Associate Professor,4Assistant Professor 

Department of Basic Science And Humanities 

G V R & S College of Engineering & Technology, Guntur, AP 

Abstract: 

 A framework for inverse problems is offered 

to build reaction systems with specified 

features. The framework includes the 

definition and analysis of kinetic 

transformations, which enable the mapping of 

any polynomial ordinary differential equation 

to the one that may be represented as a 

reaction network. The framework is applied to 

the design of certain bistable reaction systems 

in two and three dimensions that experience a 

supercritical homoclinic bifurcation, and the 

phase spaces' topology is examined. 

1 Introduction  

Chemical reaction networks under the mass 

action kinetics are relevant for both pure and 

applied mathematics. The time evolution of the 

concentrations of chemical species is 

described by kinetic equations which are a 

subset of first-order, autonomous, ordinary 

differential equations (ODEs) with polynomial 

right-hand sides (RHSs). On the one hand, the 

kinetic equations define a canonical form for 

analytic ODEs, thus being important for pure 

mathematics [16, 18]. They can display not 

only the chemically regular phenomenon of 

having a globally stable fixed point, but also 

the chemically exotic phenomena 

(multistability, limit cycles, chaos). It is then 

no surprise that chemical reaction networks 

can perform the same computations as other 

types of physical networks, such as electronic 

and neural networks [23]. On the other hand, 

reaction networks are a versatile modelling 

tool, decomposing processes from applications 

into a set of simpler elementary steps 

(reactions). The exotic phenomena in systems 

biology often execute specific biological 

functions, example being the correspondence 

between limit cycles and biological clocks [26, 

27]. The construction of reaction networks 

displaying prescribed properties may be seen 

as an inverse problem in formal reaction 

kinetics [4], where, given a set of properties, a 

set of compatible reaction networks is 

searched for. Such constructions are useful in 

application areas such systems biology (as 

caricature models), synthetic biology (as 

blueprints), and numerical analysis (as test 

problems) [25, 30]. In systems biology, kinetic 

ODEs often have higher nonlinearity degree 

and higher dimension, thus not being easily 

amenable to mathematical analysis. Having 

ODEs with lower nonlinearity degree and 

lower dimension allows for a more detailed 

mathematical analysis, and also adds to the set 

of test problems for numerical methods 

designed for more challenging real-world 

problems. In synthetic biology, such 

constructed systems may be used as a 

blueprint for engineering artificial networks 

[30]. A crucial property of the kinetic 

equations is a lack of so-called cross-negative 

terms [2], corresponding to processes that 

involve consumption of a species when its 

concentration is zero. Such terms are not 

directly describable by reactions, and may lead 

to negative values of concentrations. The 

existence of cross-negative terms, together 

with a requirement that the dependent 

variables are always finite, imply that not 

every nonnegative polynomial ODE system is 

kinetic, and, thus, further constrain the 

possible dynamics, playing an important role 

in the construction of reaction systems, 

chemical chaos, and pattern formation via 

Turing instabilities [3, 5]. A trivial example of 

an ODE with a cross-negative term is given by 

dx/dt = −k, for constant k > 0, where the term 

−k, although a polynomial of degree zero, 

nevertheless cannot be directly represented by 

a reaction, and results in x < 0. In two 
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dimensions, where the phase plane diagram 

allows for an intuitive reasoning, the exotic 

dynamics of ODE systems reduces to limit 

cycles and multistability. While two-

dimensional nonkinetic polynomial ODE 

systems exhibiting a variety of such dynamics 

can be easily found in the literature, the same 

is not true for the more constrained two-

dimensional kinetic ODE systems. Motivated 

by this, this paper consists of two main results: 

firstly, building upon the framework from [4, 

2], an inverse problem framework suitable for 

constructing the reaction systems is presented 

in Section 3, with the focus on the so-called 

kinetic transformations, allowing one to map a 

nonkinetic into a kinetic system. Secondly, in 

Section 4, the framework is used for 

construction of specific two- and three-

dimensional bistable kinetic systems 

undergoing a global bifurcation known as a 

supercritical homoclinic bifurcation. The 

corresponding phase planes contain a stable 

limit cycle and a stable fixed point, with a 

parameter controlling the distance between 

them, and their topology is discussed. 

Definitions and basic results regarding 

reaction systems are presented in Section 2. A 

summary of the paper is presented in Section 

5. 

2 Notation and definitions 

 The notation and definitions in this paper are 

inspired by [1, 8, 2]. 

Definition 2.1. Let R be the space of real 

numbers, R≥ the space of nonnegative real 

numbers, R> the space of positive real 

numbers and N = {0, 1, 2, 3, . . . } the set of 

natural numbers. Given a finite set S, with 

cardinality |S| = S, the real space of formal 

sums c = P s∈S css is denoted by R S if cs ∈ R 

for all s ∈ S. It is denoted by R S ≥ if cs ∈ R≥ 

for all s ∈ S; by R S > if cs ∈ R> for all s ∈ S; 

and by N S if cs ∈ N for all s ∈ S; where the 

number cs is called the s-component of c for s 

∈ S. Support of c ∈ R S is defined as supp(c) = 

{s ∈ S : cs 6= 0}. Complement of a set M ⊂ S 

is denoted by Mc , and given by Mc = S \ M. 

The formal sum notation is introduced so that 

unnecessary ordering of elements of a set can 

be avoided, such as when general frameworks 

involving sets are described, and when objects 

under consideration are vector components 

with irrelevant ordering. The usual vector 

notation is used when objects under 

consideration are equations in matrix form, 

and is put into using starting with equation 

(3.3). 

2.1 Reaction networks and reaction systems 

 Definition 2.2. A reaction network is a triple 

{S, C, R}, where 

(i) S is a finite set, with elements s ∈ 

S called the species of the 

network. 

(ii) C ⊂ N S is a finite set, with 

elements c ∈ C, called the 

complexes of the network, such 

that S c∈C supp(c) = S. 

Components of c are called the 

stoichiometric coefficients.  

(iii) R ⊂ C ×C is a binary relation with 

elements r = (c, c0 ), denoted r = c 

→ c 0 , with the following 

properties:  

(a) ∀c ∈ C (c → c) ∈ R/ ; 2  

(b) ∀c ∈ C ∃c 0 ∈ C such that (c → c 0 ) ∈ 

R or (c 0 → c) ∈ R.  

Elements r = c → c 0 are called reactions 

of the network, and it is said that c reacts 

to c 0 , with c being called the reactant 

complex, and c 0 the product complex. 

The order of reaction r is given by or = P 

s∈S cs < ∞ for r = c → c 0 ∈ R. 

Note that as set R implies sets S and C, 

reaction networks are denoted with R, for 

brevity. Also, as it is unlikely that a reaction 

between more than three reactants occurs [2], 

in this paper we consider reactions with or ≤ 3. 

To represent some of the non-chemical 

processes as quasireactions, the zero complex 

is introduced, denoted with ∅, with the 
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property that supp(∅) = ∅, where ∅ is the 

empty set. 

Definition 2.3. Let R be a reaction network 

and let κ : R S ≥ → R R ≥ be a continuous 

function which maps x ∈ R S ≥ (called 

“species concentrations”) into κ(x) ∈ R R ≥ 

(called “reaction rates”). Then κ is said to be a 

kinetics for R provided that, for all x ∈ R S ≥ 

and for all r = (c → c 0 ) ∈ R, positivity κr(x) 

> 0 is satisfied if and only if supp(c) ⊂ 

supp(x). 

 An interpretation of Definition 2.3 is that a 

reaction, to which a kinetics can be associated, 

can occur if and only if all the reactant species 

concentrations are nonzero.  

Definition 2.4. A reaction network R 

augmented with a kinetics κ is called a 

reaction system, and is denoted {R, κ}. 

Definition 2.5. Given a reaction system {R, κ}, 

the induced kinetic function, K(·; R) : R S ≥ 

→ R S , is given by K(x; R) = P r∈R κr(x)(c 0 

− c) where r = c → c 0 . The induced system of 

kinetic equations, describing the time 

evolution of species concentrations x ∈ R S ≥, 

takes the form of a system of autonomous 

first-order ordinary differential equations 

(ODEs), and is given by 

 

Note that the kinetic function uniquely defines 

the system of kinetic equations, and vice-

versa. In this paper, the species concentrations 

satisfying equation (2.1) are required to be 

finite, i.e. xs < ∞, for s ∈ S, and for t ≥ 0, 

except possibly for initial conditions located 

on a finite number of (S − z)-dimensional 

subspaces of R S ≥, z ≥ 1.  

Definition 2.6. Kinetics κ is called the mass 

action kinetics if κr(x) = krx c , for r = (c → c 

0 ) ∈ R, where kr > 0 is the rate constant of 

reaction r, and x c = Q s∈S x cs s , with 00 = 1. 

A reaction system with the mass action 

kinetics is denoted {R, k}, and the 

corresponding kinetic function is denoted K(x; 

k) ≡ K(x; R) = P r∈R kr(c 0 − c)x c , where k ∈ 

R R > .  

A review of the mass action kinetics can be 

found in [32]. In this paper, most of the results 

are stated with kinetics fixed to the mass 

action kinetics. This is not restrictive, as an 

arbitrary analytic function can always be 

reduced to a polynomial one [16].  

Example 2.1. Consider the following reaction 

network (consisting of one reaction) under the 

mass action kinetics: 

 

so that S = {s1, s2}, C = {s1 + s2, 2s2}, R = 

{s1 + s2 → 2s2} and k = {k1}. Concentration 

x ∈ R S ≥ has two components. To simplify 

our notation, we write x1 = xs1 , x2 = xs2 , 

and K1(x; k) = Ks1 (x; R), K2(x; k) = Ks2 (x; 

R). Then the induced system of kinetic 

equations is given by 

 

2.2 Kinetic and nonkinetic functions 

 In this subsection, nonkinetic functions are 

defined, and further notation for kinetic and 

nonkinetic functions taking the mass action 

form is presented.  

Definition 2.7. Let f : R S ≥ → R S be given 

by fs(x) = P r∈R fsr(x), where fsr(x) ∈ R, for x 

∈ R S ≥, s ∈ S and r ∈ R. If ∃s ∈ S, ∃r ∈ R and 

∃x ∈ R S ≥ such that s ∈ suppc (x) and fsr(x) < 

0, then fsr(x) is called a cross-negative term, 

and function f(x) and ODE system dx/dt = f(x) 

are said to be nonkinetic.  

An interpretation of a cross-negative term is 

that the process corresponding to such a term 

would consume at least one reactant even 
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when its concentration is zero, so that it cannot 

be represented as kinetic reactions.  

Kinetic and nonkinetic functions taking the 

mass action kinetics form are central to this 

paper. The related notation is introduced in the 

following definition. 

Definition 2.8. Let P(·; k) : R S → R S , k ∈ R 

R, be a polynomial function with polynomial 

degree deg(P(x; k)) ≤ m, m ∈ N. Then, the set 

of functions P(x; k) is denoted by Pm(R S ; R 

S ). If P(x; k) is a kinetic function, it is denoted 

by K(x; k), k ∈ R R > , and the set of such 

functions is denoted by P K m(R S ≥; R S ). If 

P(x; k) is a nonkinetic function, it is denoted 

by N (x; k), k ∈ R R, and the set of such 

functions with domain R S is denoted by P N 

m(R S ; R S ), while with domain R S ≥ by P 

N m(R S ≥; R S ).  

Note that a system {R, k}, corresponding to N 

(x; k) in Definition 2.8, has a well-defined 

reaction network R (for r = c → c 0 , r ∈ R, we 

restrict c, c0 to positive integers), but an ill-

defined kinetics taking the mass action form 

(we allow set k to have elements that are 

negative). Thus, set k corresponding to N (x; 

k) cannot be interpreted as a set of reaction 

rate constants, as opposed to set k 

corresponding to K(x; k) (see also Example 

2.2). Note also that Pm(R S ≥; R S ) = P K 

m(R S ≥; R S )∪ P N m(R S ≥; R S ), with P K 

m(R S ≥; R S ) ∩ P N m(R S ≥; R S ) = ∅. 

2.3 Properties of kinetic functions 

 From Definition 2.3 it follows that a kinetic 

function K(x; R) has a structural property: 

crossnegative terms are absent. In this 

subsection, further properties of K(x; R) are 

defined: nonnegativity (absence of cross-

negative effect), and a structural property 

called x-factorability.  

Definition 2.9. Let f : R S ≥ → R S be given 

by fs(x) = P r∈R fsr(x), where fsr(x) ∈ R, for x 

∈ R S ≥, s ∈ S and r ∈ R. If ∀s ∈ S, ∀x ∈ R S 

≥, s ∈ suppc (x) ⇒ fs(x) ≥ 0, then f(x) and 

dx/dt = f(x) are said to be nonnegative. 

Otherwise, f(x) and dx/dt = f(x) are said to be 

negative, and a cross-negative effect is said to 

exists ∀x ∈ R S ≥ for which ∃s ∈ S such that s 

∈ suppc (x) and fs(x) < 0. 

Note that the absence of cross-negative terms 

implies nonnegativity, but the converse is not 

necessarily true [2, 7], i.e. an ODE system may 

have cross-negative terms, without having a 

cross-negative effect, as we will show in 

Example 2.2. Cross-negative terms play an 

important role in mathematical constructions 

of reaction systems, in the context of chaos in 

kinetic equations, and pattern formation via 

Turing instabilities [3, 5]. In the context of 

oscillations, as a generalization of the result in 

[20], one can prove that in twodimensional 

reaction systems with mass action form and 

with at most bimolecular reactions, the 

nonexistence of a cross-negative effect in the 

ODEs is a sufficient condition for 

nonexistence of limit cycles (see A). 

Example 2.2. Consider the following ODE 

system with polynomial RHS: 

 

where P(x; k) ∈ P2(R S ; R S ), S = 2, k ∈ R 

and x = {x1, x2}. Considering x1 = 0 and x2 > 

0, it follows that P1({0, x2}; k) = 1 + 2kx2 + x 

2 2 . Then: 

(i) If k ≥ 0, then (2.5)–(2.6) contains 

no cross-negative terms, and so it 

is kinetic: P(x; k) ∈ P K 2 (R S ≥; 

R S ).  

(ii) (ii) If k < 0, then (2.5)–(2.6) 

contains one cross-negative term, 

2kx2, and so it is nonkinetic: P(x; 

k) ∈ P N 2 (R S ; R S ). (a) If −1 ≤ 

k < 0, then (2.5)–(2.6) contains no 

cross-negative effect, and so it is 

nonnegative. (b) If k < −1, then 

(2.5)–(2.6) contains a cross-

negative effect for x = {0, x2}, 
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where x2 ∈ − k − √ k 2 − 1, −k + √ 

k 2 − 1  , and so it is negative 

System (2.5)–(2.6) induces a reaction 

system only in case (i). In particular, 

nonnegative ODE system (2.5)–(2.6) with 

P(x; k) ∈ P N 2 (R S ≥; R S ) in part (ii)(a) 

does not induce a reaction system 

(although, given a nonnegative initial 

condition, the solution of (2.5)–(2.6) is 

nonnegative for all forward times). 

Definition 2.10.  

Let f : R S ≥ → R S be given by fs(x) = P 

r∈R fsr(x), where fsr(x) ∈ R, for x ∈ R S 

≥, s ∈ S and r ∈ R. Then term fsr(x) is said 

to be xs-factorable if fsr(x) = xspsr(x), 

where psr(x) is a polynomial function of x. 

If ∃s ∈ S, such that fs(x) = xs P r∈R 

psr(x), then f(x) and ODE system dx/dt = 

f(x) are said to be xs-factorable. If ∀s ∈ S 

it is true that fs(x) = xs P r∈R psr(x), then 

f(x) and ODE system dx/dt = f(x) are said 

to be x-factorable. 

 Example 2.3. System (2.3)–(2.4) is x-

factorable, since K1(x; k) = x1(−k1x2) and 

K2(x; k) = x2(k1x1). X-factorable ODE 

systems are a subset of kinetic equations 

under the mass action kinetics [10] (see 

also Section 3.2.2). 

3 Inverse problem for reaction systems 

 In some applications, we are interested in 

the direct problem: we are given a reaction 

network with kinetics, i.e. a reaction 

system {R, κ}, and we then analyse the 

induced system of kinetic equations (2.1) 

in order to determine properties of the 

reaction system. For example, an output of 

a direct problem might consist of verifying 

that the kinetic equations undergo a 

bifurcation. In this paper, we are interested 

in the inverse problem: we are given a 

property of an unknown reaction system, 

and we would then like to construct a 

reaction system displaying the property. 

The inverse problem framework described 

in this section is inspired by [2, 4]. The 

first step in the inverse problem is, given a 

quantity that depends on a kinetic 

function, to find a compatible kinetic 

function K(x; R), while the second step is 

then to find a reaction system {R, κ} 

induced by the kinetic function. The 

second step is discussed in more detail in 

Section 3.1, while the first step in Section 

3.2. The constructions of a reaction system 

{R, κ} often involve constraints defining 

simplicity of the system (e.g. see [22]), 

and the simplicity can be related to the 

kinetic equations (structure and dimension 

of the equations, and/or the phase space), 

and/or to reaction networks (cardinality, 

conservability, reversibility, deficiency). 

How the simplicity constraints are 

prioritized depends on the application 

area, with simplicity of the kinetic 

equations being more important for 

mathematical analysis, while simplicity of 

the reaction networks for synthetic 

biology. 

3.1 The canonical reaction network Let us 

assume that we are able to construct an 

ODE system of the form (2.1) where its 

RHS is a kinetic function, K(x; R), and the 

system has the property required by the 

inverse problem. Then, one can always 

find a reaction system induced by the 

kinetic function [3, 4]. While, for a fixed 

kinetics, a reaction network induces 

kinetic function uniquely by definition 

(see Definition 2.5), the converse is not 

true – the inverse mapping of the kinetic 

function to the reaction networks is not 

unique – a fact known as the fundamental 

dogma of chemical kinetics [8, 9, 3]. For 

example, in [9], for a fixed kinetic 

function and a fixed set of complexes (C 

fixed), mixed integer programming is used 

for numerical computation of different 

induced reaction networks with varying 

properties. On the other hand, a 

constructive proof that every kinetic 

function induces a reaction system is given 
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in [3], where C is generally not fixed 

(product complexes may be created), but 

the construction can be performed 

analytically, and it uniquely defines an 

induced reaction system for a given kinetic 

function. The procedure is used in this 

paper, so it is now defined. 

Definition 3.1. Let κ : R S ≥ → R R ≥ be a 

kinetics. Consider the kinetic function 

given by K(x; R) = P r∈R drκr(x), where x 

∈ R S ≥ and dr ∈ R S . Let us map K(x; R) 

to a reaction system {RK−1 , κK−1 } with 

complexes and kinetics given by:  

(i) Reactant complexes, cr, are 

assumed to be uniquely obtainable 

from κr(x) for r ∈ R, which is true 

in the case of the mass action 

kinetics.  

(ii)  Reaction cr → c 0 rs is then 

constructed for each r ∈ R and s ∈ 

S, where new product complexes 

are given by c 0 rs = cr + 

sign(drs)s, with sign(·) being the 

sign function.  

(iii)  The new kinetics is then defined 

as κK−1r 0(x) ≡ |drs|κr(x), for r ∈ 

R, s ∈ S, where r 0 ∈ RK−1 . The 

induced reaction system {RK−1 , 

κK−1 } is called the canonical 

reaction system, with RK−1 being 

the canonical reaction network.  

Note that the procedure in Definition 3.1 

creates a reaction for each term in each 

kinetic equation. Note also that each 

reaction leads to a change in copy number 

of precisely one chemical species, and the 

change in the copy number is equal to one. 

Thus, the canonical reaction networks are 

simple in the sense that they can be 

constructed from a kinetic function in 

straightforward way, while they generally 

do not contain minimal number of 

reactions. 

Example 3.1. The canonical reaction 

network for system (2.3)–(2.4) is given by 

 

so that S = {s1, s2}, C = {s1 + s2, s2, s1 + 

2s2}, RK−1 = {s1 + s2 → s2, s1 + s2 → 

s1 + 2s2} and kK−1 = {k1, k2}, k2 = k1. 

Note that the canonical reaction network 

(3.1) contains more reactions than the 

original network (2.2). 

3.2 Kinetic transformations 

Firstly, mapping a solution-dependent 

quantity to the RHS of an ODE system is 

much more likely to result in nonkinetic 

functions, N (x; R), on the RHS (see 

Definition 2.7) [2]. However, only kinetic 

functions induce reaction networks, as 

exemplified in Example 2.2. Secondly, 

even if mapping a solution-dependent 

quantity results in a kinetic function, it 

may be necessary to modify the function 

in order to satisfy given constraints, and 

this may change the kinetic function into a 

nonkinetic function. For these two reasons, 

it is beneficial to study mappings that can 

transform arbitrary functions into kinetic 

functions. This motivates the following 

definition, for the case of mass action 

kinetics, that relies on the notation 

introduced in Definition 2.8.  

Definition 3.2. Let P(x; k) ∈ Pm(R S ; R S 

), k ∈ R R, i.e. P(x; k) is a polynomial 

function. Consider the corresponing ODE 

system in the formal sum notation 

 

where x ≡ x(t) ∈ R S . Then, a 

transformation Ψ is called a kinetic 

transformation if the following conditions 

are satisfied:  

(i) Ψ : Pm(R S ; R S ) → P K m¯ (R 

S¯ ≥; R S¯ ), ¯m ≥ m, S¯ ≥ S, 

maps the polynomial function P(x; 

k) into a kinetic function K(¯x; 
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¯k) ≡ (Ψ(P))(¯x; ¯k) for ¯x ∈ R S¯ 

≥ and ¯k ∈ R R¯ > .  

(ii) (ii) Let x ∗ be a fixed point of 

(3.2) that is mapped by Ψ to fixed 

point ¯x ∗ ∈ R S¯ ≥ of the system 

of kinetic equations (2.1) with 

K(¯x; ¯k) on its RHS. Let also the 

eigenvalues of the Jacobian matrix 

of P(x; k), J(x ∗ ; k), denoted by 

λn, n = 1, 2, . . . , S, be mapped to 

the eigenvalues of Jacobian of 

K(¯x; ¯k), JΨ(¯x ∗ ; ¯k), which 

are denoted by λ¯ n, n = 1, 2, . . . , 

S. Then, for every such fixed point 

x ∗ it must be true that sign(λn) = 

sign(λ¯ n), n = 1, 2, . . . , S, and, if 

there are any additional 

eigenvalues λ¯ n, n = S, S + 1, . . . 

, S¯, they must satisfy sign(λ¯ n) < 

0. 

If any of the condition (i)–(ii) is not true, 

Ψ is called a nonkinetic transformation. 

Put more simply, given an input 

polynomial function, a kinetic 

transformation must (i) map the input 

polynomial function into an output kinetic 

function, and (ii) the output function must 

be locally topologically equivalent to the 

input function in the neighbourhood of the 

corresponding fixed points, and the 

dynamics along any additional dimensions 

of the output function (corresponding to 

the additional species) must 

asymptotically tend to the corresponding 

fixed point. Let us note that the output 

function is defined only in the nonnegative 

orthant, so that the topological equivalence 

must hold only near the fixed points of the 

input function that are mapped to the 

nonnegative orthant under kinetic 

transformations.  

One may wish to impose a set of 

constraints on an output function, such as 

requiring that a predefined region of 

interest in the phase space of the input 

function is mapped to the positive orthant 

of the corresponding output function. A 

subset of constraints is now defined. 

Definition 3.3. Let P(x; k) ∈ Pm(R S ; R S 

), k ∈ R R. Let also φj : R R → R be a 

continuous function, mapping set k into φj 

(k) ∈ R, j = 1, 2, . . . , J. Then, set Φ ≡ {φj 

(k) ≥ 0 : j = 1, 2, . . . , J} is called a set of 

constraints.  

There are two sets of kinetic 

transformations. The first, and the 

preferred, set of possible kinetic 

transformations are affine transformations, 

which are discussed in Section 3.2.1. 

Affine transformations may be used, not 

only as possible kinetic transformations, 

but also to satisfy a set of constraints. The 

second set, necessarily used when affine 

transformations fail, are nonlinear 

transformations that replace cross-negative 

terms, with x-factorable terms (see 

Definition 2.10), without introducing new 

cross-negative terms, and two such 

transformations are discussed in Sections 

3.2.2 and 3.2.3. In choosing a nonlinear 

transformation, one generally chooses 

between obtaining, on the one hand, 

lower-dimensional kinetic functions with 

higher-degree of nonlinearity (i.e. lower 

S/S ¯ and higher ¯m/m in Definition 

3.2(i)) and/or higher numbers of the 

nonlinear terms, and, on the other hand, 

higher-dimensional kinetic functions with 

lower degree of nonlinearity (i.e. higher 

S/S ¯ and lower ¯m/m) and/or lower 

numbers of the nonlinear terms. Before 

describing the transformations in a greater 

detail, the usual vector notation is 

introduced and related to the formal sum 

notation from Section 2. The vector 

notation is used when ODE systems are 

considered in matrix form, while the 

formal sum notation is used when ODE 

systems are considered component-wise.  

Notation. Let |S| = S, |C| = C and |R| = R, 

and suppose S, C and R are each given a 

fixed ordering with indices being n = 1, 2, 
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. . . , S, i = 1, 2, . . . , C, and l = 1, 2, . . . , 

R, respectively, i.e. one can identify the 

ordered components of formal sums with 

components of Euclidean vectors. Let also 

the indices sn be denoted by n, n = 1, 2, . . 

. , S, for brevity. Then, the kinetic 

equations under the mass action kinetics in 

the formal sum notation are given by (2.1). 

In this section, we start with equations 

which have more general polynomial, and 

not necessarily kinetic, functions on the 

RHS, i.e. the ODE system is written in the 

formal sum notation as (3.2), while in the 

usual vector notation by 

 

where P(x; k) ∈ Pm(R S ; R S ), x ∈ R S ≥, 

and k ∈ R R. 

3.2.1 Affine transformation Definition 3.4. 

Consider applying an arbitrary nonsingular 

matrix A ∈ R S×S on equation (3.3), 

resulting in: 

 

where ¯x = Ax, and k¯ is a vector of new 

rate constants obtained from k by 

rewriting the polynomial on the RHS of 

(3.4) into the mass action form. Then ΨA : 

Pm(R S ; R S ) → Pm(R S ; R S ), 

mapping P(x; k) to (ΨAP)(¯x; k¯), is 

called a centroaffine transformation. If A is 

an orthogonal matrix, then ΨA is called an 

orthogonal transformation.  

Definition 3.5. Consider substituting ¯x = 

x + T in equation (3.3), where T ∈ R S , 

which results in: 

 

where k¯ is a vector of the new rate 

constants obtained from k by rewriting the 

polynomial on the RHS of (3.5) into the 

mass action form. Then ΨT : Pm(R S ; R S 

) → Pm(R S ; R S ), mapping P(x; k) to 

(ΨT P)(¯x; k¯), is called a translation 

transformation. 

 A composition of a translation and a 

centroaffine transformation, ΨA,T = ΨA ◦ 

ΨT , i.e. an affine transformation, may be 

used as a possible kinetic transformation 

(see Definition 3.2). Let us note that 

condition (ii) in Definition 3.2 is 

necessarily satisfied for all affine 

transformation, i.e. affine transformations 

preserve the topology of the phase space, 

as well as the polynomial degree of the 

functions being mapped [6]. For these 

reasons, affine transformations are 

preferred over the alternative nonlinear 

transformations, discussed in the next two 

sections. However, affine transformations 

do not necessarily satisfy condition (i) in 

Definition 3.2, so that they are generally 

nonkinetic transformations. However, 

despite being generally nonkinetic, affine 

transformations map sets k into new sets 

¯k (see equations (3.4) and (3.5)), so that 

they may be used for satisfying a given set 

of constraints imposed on the output 

function (see Definition 3.3). This 

motivates the following definition.  

Definition 3.6. Let P(x; k) ∈ Pm(R S ; R S 

). If it is not possible that simultaneously 

(ΨA ◦ ΨT P)(¯x; ¯k) is a kinetic function, 

and that a given set of constraints Φ ≡ {φj 

( ¯k) ≥ 0 : j = 1, 2, . . . , J} is satisfied, for 

all A ∈ R S×S and for all T ∈ R S , then it 

is said that P(x; k) and the corresponding 

equation (3.2) are affinely nonkinetic, 

given the constraints. Otherwise, they are 

said to be affinely kinetic, given the 

constraints.  

If the set of constraints in Definition 3.3 is 

empty, affinely nonkinetic functions are 

called essentially nonkinetic, while those 

that are affinely kinetic are called 

removably nonkinetic. Such labels 

emphasize that, if a function is essentially 

nonkinetic, a kinetic function that is 
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globally topologically equivalent cannot 

be obtained, while if a function is 

removably nonkinetic, a globally 

topologically equivalent kinetic function 

can be obtained.  

Explicit sufficient conditions for a 

polynomial function P(x; k) to be affinely 

kinetic, or nonkinetic, are generally 

difficult to obtain. Even in the simpler case 

P(x; k) ∈ P2(R 2 ; R 2 ), such conditions 

are complicated, and cannot be easily 

generalized for higher-dimensional 

systems and/or systems with higher degree 

of nonlinearily [6]. In [5], based on the 

polar and spectral decomposition 

theorems, it has been argued that if no 

orthogonal transformation is kinetic, then 

no centroaffine transformation is kinetic. 

The result is reproduced in this paper 

using the more concise singular value 

decomposition theorem, and is generalized 

to the case when the set of constraints is 

nonempty. Loosely speaking, the theorem 

states that “orthogonally nonkinetic” 

functions are affinely nonkinetic as well, 

given certain constraints. 

Theorem 3.1. If P(x; k) ∈ Pm(R S ; R S ) 

is nonkinetic under ΨQ ◦ΨT , given a set 

of constraints Φ, for all orthogonal 

matrices Q ∈ R S×S and for all T ∈ R S , 

then P(x; k) is also affinely nonkinetic, 

given Φ, provided the following condition 

holds: sign(φj (k)) = sign(φj ( ¯k)), j = 1, 

2, . . . , J, for all diagonal and positive 

definite matrices Λ ∈ R S×S , with ΨΛP = 

(ΨΛ P)(¯x; ¯k).  

Proof. By the singular value 

decomposition theorem, nonsingular 

matrices A ∈ R S×S can be written as A = 

Q1ΛQ2, where Q1, Q2 ∈ R S×S are 

orthogonal, and Λ ∈ R S×S diagonal and 

positive definite. Cross-negative terms are 

invariant under transformation ΨΛ for all 

Λ [5]. If Φ from Definition 3.3 is such that 

functions sign(φj (k)), j = 1, 2, . . . , J, are 

invariant under all positive definite 

diagonal matrices Λ ∈ R S×S , the 

statement of the theorem follows. 

3.2.2 X-factorable transformation 

Definition 3.7. Consider multipling the 

RHS of equation (3.3) by a diagonal 

matrix X (x) = diag(x1, x2, . . . , xS), 

resulting in 

 

Then ΨX : Pm(R S ; R S ) → Pm+1(R S ; 

R S ), mapping P(x; k) to (ΨX P)(x; k), is 

called an xfactorable transformation. If X 

is diagonal and its nonzero elements are 

 

where S 0 ⊂ S, S 0 6= ∅, then the 

transformation is denoted ΨXS0 , and is 

said to be xS0-factorable. When X ∈ R 2 is 

x1-factorable, i.e. X (x1) = diag(x1, 1), we 

write ΨX1 ≡ ΨX{1} .  

Theorem 3.2. (ΨX P)(x; k) from 

Defnition 3.7 is a kinetic function, i.e. (ΨX 

P)(x; k) ∈ P K m+1(R S ≥; R S ). Proof. 

See [10]. 

Functions P(x; k) and (ΨX P)(x; k) are not 

necessarily topologically equivalent due to 

two overlapping artefacts that ΨX can 

produce, so that ΨX is generally a 

nonkinetic transformation. Firstly, the 

fixed points of the former system can 

change the type and/or stability under ΨX 

, and, secondly, the latter system has an 

additional finite number of boundary fixed 

points. The following theorem specifies 

the details of the artefacts for two-

dimensional systems.  

Theorem 3.3. Let us consider the ODE 

system (3.3) in two dimensions with RHS 

P(x; k) = (P1(x; k),P2(x; k))>. The 

following statements are true for all the 

fixed points x ∗ of the twodimensional 
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system (3.3) in R 2 > under ΨXS0 , S 0 ⊆ 

S, S 0 6= ∅: 

(i) All the saddle fixed points are 

unconditionally invariant, i.e. 

saddle points of (3.3) correspond 

to saddle points of (3.6).  

(ii) (ii) A sufficient condition for 

stability of a fixed point x ∗ to be 

invariant is: 

 

(iii) A sufficient condition for the type 

of a fixed point x ∗ to be invariant 

is: 

 

 

Assume that the ODE system (3.3) does not 

have fixed points on the axes of the phase 

space. Nevertheless, the two-dimensional 

system (3.6) can have additional fixed points 

on the axes of the phase space, called 

boundary fixed points, denoted x ∗ b ∈ R 2 ≥. 

The boundary fixed points can be either nodes 

or saddles, and the following statements are 

true: (iv) If system (3.6) is x-factorable, then 

the origin is a fixed point, x ∗ b = 0, with 

eigenvalues λi = Pi(x ∗ b ; k) 6= 0, i = 1, 2, 

and the corresponding eigenvectors along the 

phase space axes. 

v) For x ∗ b,i = 0, x ∗ b,j 6= 0, x ∗ b ∈ R 2 ≥, i, 

j = 1, 2, i 6= j, a boundary fixed point is a node 

if and only if 

 

with the node being stable if Pi(x ∗ b ; k) < 0, 

and unstable if Pi(x ∗ b ; k) > 0, i, j = 1, 2, i 6= 

j. Otherwise, the fixed point is a saddle.  

Proof. Without loss of generality, we consider 

two forms of the system (3.6) with S = 2: 

 

where p ∈ {0, 1}, so that system (3.7)–(3.8) is 

x-factorable for p = 1, but only x1-factorable 

for p = 0. The results derived for an x1-

factorable system hold when the system is x2-

factorable, if the indices are swapped. By 

writing Pi(x; k) = Pi , i = 1, 2, the Jacobian of 

(3.7)–(3.8), JX , is for p ∈ {0, 1} given by 

 

First, consider how fixed points of P(x; k) are 

affected by transformation ΨXS0 . Denoting 

the Jacobian of two-dimensional system (3.3) 

by J, and assuming the fixed points are not on 

the axes of the phase space (i.e. x ∗ ∈ R 2 >), 

the Jacobians evaluated at x ∗ are given by: 

 

Comparing the trace, determinant and 

discriminant of J(x ∗ ) and JX (x ∗ ), we 

deduce (i)–(iii). To prove (iv)–(v), we evaluate 

JX at the boundary fixed points of the form x ∗ 

b = (0, x∗ b,2 ) to get 

 

If p = 1, then one of the boundary fixed points 

is x ∗ b = 0, and the Jacobian becomes a 

diagonal matrix, so that condition (iv) holds. If 

x ∗ b,2 6= 0, then P2(0, x∗ b,2 ; k) = 0 in (3.9), 

and comparing the trace, determinant and 

discriminant of J(x ∗ ) and JX (x ∗ b ), we 

deduce (v). Theorem 3.3 can be used to find 

conditions that an x-factorable transformation 

given by ΨX : Pm(R 2 ; R 2 ) → Pm+1(R 2 ; 

R 2 ) is a kinetic transformation. While 

conditions (ii)–(iii) in Theorem 3.3 may be 

violated when ΨX is used, so that ΨX is a 
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nonkinetic transformation, a composition of an 

affine transformation and an x-factorable 

transformation, i.e. ΨX,A,T = ΨX ◦ ΨA ◦ ΨT , 

may be kinetic. Furthermore, such a composite 

transformation may also be used to control the 

boundary fixed points introduced by ΨX . 

Finding an appropriate A and T to ensure the 

topological equivalence near the fixed points 

typically means that the region of interest in 

the phase space has to be positioned at a 

sufficient distance from the axes. However, 

since the introduced boundary fixed points 

may be saddles, this implies that the phase 

curves may be significantly globally changed, 

regardless of how far away from the axes they 

are. The most desirable outcome of controlling 

the boundary fixed points is to eliminate them, 

or shift them outside of the nonnegative 

orthant. The former can be attempted by 

ensuring that the nullclines of the original 

ODE system (3.3) do not intersect the axes of 

the phase space, while the latter by using the 

Routh-Hurwitz theorem [34].  

An alternative transformation, which is always 

kinetic, that also does not change the 

dimension of an ODE system is the time-

parametrization transformation [14]. However, 

while ΨX increases the polynomial degree by 

one, and introduces only a finite number of 

boundary fixed points which are given as 

solutions of suitable polynomials, the time-

parameterization transformation generally 

increases the nonlinearity degree more than 

ΨX , and introduces infinitely many boundary 

fixed points. 

3.2.3 The quasi-steady state transformation  

The quasi-steady state assumption (QSSA) is a 

popular constructive method for reducing 

dimension of ODE systems by assuming that, 

at a given time-scale, some of the species 

reach a quasi-steady state, so that they can be 

described by algebraic, rather than differential 

equations. The QSSA is based on Tikhonov’s 

theorem [11, 12] that specifies conditions 

ensuring that the solutions of the reduced 

system are asymptotically equivalent to the 

solutions of the original system. The original 

system is referred to as the total system, and it 

consists of the reduced subsystem, referred to 

as the degenerate system, and the remaining 

subsystem, called the adjointed system, so that 

the QSSA consists of replacing the total 

system with the degenerate one, by eliminating 

the adjointed system. Korzukhin’s theorem 

[11, 12] is an existence result ensuring that, 

given any polynomial degenerate system, there 

exists a corresponding total system that is 

kinetic.  

Thus, Tikhonov’s theorem can be seen as a 

constructive direct asymptotic dimension 

reduction procedure, while Korzukhin’s 

theorem as an inverse asymptotic dimension 

expansion existence result. Korzukhin’s 

theorem has an important implication that an 

application of the QSSA can result in a 

degenerate system that is structurally different 

than the corresponding total system. In this 

paper, the QSSA is assumed to necessarily be 

compatible with Tikhonov’s theorem. If this is 

not the case, then it has been demonstrated in 

[14, 15] that application of a QSSA can create 

dynamical artefacts, i.e. it can result in 

degenerate systems, not only structurally 

different, but also dynamically different from 

the total systems. The artefacts commonly 

occur due to the asymptotic parameters in 

Tikhonov’s theorem not being sufficiently 

small. For example, it has been shown that 

exotic phenomena such as multistability and 

oscillations can exist in a degenerate system, 

while not existing in the corresponding total 

system [14, 15]. Using Korzukhin’s and 

Tikhonov’s theorems, a family of kinetic total 

systems for an arbitrary nonkinetic polynomial 

degenerate system can be constructed, as is 

now shown. For simplicity, we denote x c = Q 

s∈S x cs s , for any x ∈ R S and c ∈ N S . 

Definition 3.8. Consider equation (3.2), and 

assume that the reaction set is partitioned, R = 

R1 ∪ R2, R1 ∩ R2 = ∅, so that (3.2), together 

with the initial conditions, can be written as 
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where x ∈ R S , αsr ∈ N S , βsr ∈ N S , αsr 6= 

βsr, asr ∈ R≥ and bsr ∈ R≥ for all s ∈ S and r ∈ 

R. Assume further that the species set is 

partitioned, S = S1 ∪ S2, S1 ∩ S2 = ∅, so that 

equations for species s ∈ S1 are kinetic, while 

those for species s ∈ S2 are nonkinetic. 

Consider the following 

total system, consisting of a degenerate system 

given by 

 

which satisfies the initial condition (3.11) with 

x 0 s > 0 for s ∈ S2, and an adjointed system 

given by 

 

where µ > 0, ωs > 0 are parameters, and p(x) is 

a polynomial function of x satisfying p(x) ∈ 

Pm0 (R S ≥; R S2 > ) for m0 ∈ N. Then 

ΨQSSA : Pm(R S ; R S ) → Pm¯ (R S+S2 ≥ ; 

R S+S2 ), mapping the RHS of differential 

equations in system (3.10)–(3.11), denoted 

P(x; k), to the RHS of differential equations of 

system (3.12)–(3.15), denoted (ΨQSSAP)({x, 

y}; ¯k), with the constraint that xs > 0 for s ∈ 

S2, is called a quasi-steady state 

transformation. Here, ¯m ≤ m+m0 + 2, and ¯k 

is a vector of the new rate constants obtained 

from k by rewriting the polynomial 

(ΨQSSAP)({x, y}; ¯k) into the mass action 

form. 

Theorem 3.4. Solutions of systems (3.10)–

(3.11) and (3.12)–(3.15), corresponding to P(x; 

k) and (ΨQSSAP)({x, y}; ¯k), are 

asymptotically equivalent in the limit µ → 0, 

and (ΨQSSAP)({x, y}; ¯k) is a kinetic 

function.  

Proof. Fixed points of system (3.14) satisfy y ∗ 
s = ωs(xsps(x))−1 . The fixed points are 

isolated, and, since (from Definition 3.8) xs > 

0 and ps(x) > 0, ∀x ∈ R S ≥, ∀s ∈ S2, it 

follows that the fixed points are globally 

stable. Thus, the conditions of Tikhonov’s 

theorem [11] are satisfied by the total system 

(3.12)–(3.15). Then, by applying the theorem, 

i.e. substituting y ∗ s into (3.13), one recovers 

the corresponding degenerate system given by 

(3.10)–(3.11). Finally, the total system (3.12)–

(3.15) is kinetic, as can be verified by using 

Definition 2.7.  

Corollary 3.1. The quasi-steady state 

transformation ΨQSSA, defined in Definition 

3.8, is a kinetic transformation in the limit µ 

→ 0.  

An alternative transformation, for which 

condition (i) in Definition 3.2 is also always 

satisfied, and that also expands the dimension 

of an ODE system, is an incomplete Carleman 

embedding [18, 17]. However, condition (ii) in 

Definition 3.2 is satisfied for the incomplete 

Carleman embedding only provided initial 

conditions for the adjointed system are 

appropriately constrained, and, furthermore, 

the transformation generally results in an 

adjointed system with a higher nonlinearity 

degree when compared to ΨQSSA. In fact, 

Theorem 3.4 can be seen as an asymptotic 

alternative to the incomplete Carleman 

embedding, i.e. instead of requiring adjointed 

variables to satisfy ys(t) = ωs x −1 s (t) p −1 s 

(x(t)), one requires them to satify limµ→0 

ys(t) = ωs x −1 s (t) p −1 s (x(t)). The theorem 

can also be seen as an extension of using the 

QSSA to represent reactions of more than two 

molecules as a limiting case of bimolecular 

reactions [19] to the case of using the QSSA to 

represent cross-negative terms as a limiting 

case of kinetic ones. 

4 Construction of reaction systems 

undergoing a supercritical homoclinic 

bifurcation 

 In this section, a brief review of a general 

bifurcation theory, and a more specific 

homoclinic bifurcation, is presented. This is 

followed by applying the framework 
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developed in Section 3 to construct specific 

reaction systems displaying the homoclinic 

bifurcation.  

Variations of parameters in a parameter 

dependent ODE system may change topology 

of the phase space, e.g. a change may occur in 

the number of invariant sets or their stability, 

shape of their region of attraction or their 

relative position. At values of the bifurcation 

parameters at which the system becomes 

topologically nonequivalent it is said that a 

bifurcation occurs, and the bifurcation is 

characterized by two sets of conditions: 

bifurcation conditions defining the type of 

bifurcation, and genericity conditions ensuring 

that the system is generic, i.e. can be 

simplified near the bifurcation to a normal 

form [24]. If it is sufficient to analyse a small 

neighbourhood of an invariant set to detect a 

bifurcation, the bifurcation is said to be local. 

Otherwise, it is called global, and the analysis 

becomes more challenging. Bifurcations are 

common in kinetic equations, where, in the 

case of the mass action kinetics, the rate 

constants play the role of bifurcation 

parameters [25, 26, 27, 28, 29]. In this paper, 

focus is placed on a global bifurcation giving 

rise to stable oscillations, called a supercritical 

homoclinic bifurcation [24, 21, 26].  

Definition 4.1. Suppose x ∗ is a fixed point of 

system (3.3). An orbit γ ∗ starting at a point x 

is called homoclinic to the fixed point x ∗ if its 

α-limiting and ω-limiting sets are both equal to 

x ∗ .  

Put more simply, a homoclinic orbit connects a 

fixed point to itself. An example of a 

homoclinic orbit to a saddle fixed point can be 

seen in Figure 1(b) on page 16, where the 

homoclinic orbit is shown as the purple loop, 

while the saddle as the blue dot at the origin.  

If a homoclinic orbit to a hyperbolic fixed 

point is present in an ODE system, then the 

system is structurally unstable, i.e. small 

perturbations to the equations can destroy the 

homoclinic orbit and change the structure of 

the phase space, so that a bifurcation can 

occur. For twodimensional systems, the 

bifurcation and genericity conditions are 

completely specified by the Andronov-

Leontovich theorem [24] given in B. In 

summary, the theorem demands that the sum 

of the eigenvalues corresponding to the saddle 

at the bifurcation point, called the saddle 

quantity, must be nonzero (nondegeneracy 

condition), and that the so-called Melnikov 

integral at the bifurcation point evaluated 

along the homoclinic orbit must be nonzero 

(transversality condition). 

4.1 The inverse problem formulation  

Construction of reaction systems with 

prescribed properties is an inverse problem 

which we will solve by applying kinetic 

transformations described in Section 3. Our 

goal is to find a reaction system with the mass 

action kinetics (see Definition 2.6) such that 

the kinetic equations satisfy assumptions of 

Andronov-Leontovich theorem in B, i.e. they 

must contain a homoclinic orbit defined on a 

two-dimensional manifold in the nonnegative 

orthant, and undergo the homoclinic 

bifurcation in a generic way. The output of this 

inverse problem will be a canonical reaction 

network which corresponds to the constructed 

ODE system. Thus the inverse problem is 

solved in three steps given in Algorithm 1. The 

first step is solved by using results of 

Sandstede [21] which leads to a set of 

polynomial functions satisfying the first three 

conditions of Andronov-Leontovich theorem 

in B. An additional transformation is then 

performed ensuring that the final condition of 

Andronov-Leontovich theorem is satisfied. In 

this paper, nonlinear kinetic transformations 

are applied on the resulting polynomial 

function (using Step (2), case (b), in Algorithm 

1). 

1. Construction of a polynomial function P(x; 

k): Find an ODE system (3.2) which satisfies 

the assumptions of Andronov-Leontovich 

theorem in B.  
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2. Construction of a kinetic function K(¯x; 

¯k): Find a transformation so that the 

following conditions are satisfied:  

(i) The transformation is kinetic (see 

Definition 3.2), mapping the polynomial 

function P(x; k) into a kinetic function K(¯x; 

¯k) ≡ (ΨP)(¯x; ¯k). 

 (ii) The set of constraints (see Definition 3.3) 

ensuring that the homoclinic orbit is in R 2 ≥ 

are satisfied for K(¯x; ¯k).  

To determine the choice of Ψ, if possible, use 

Theorem 3.1 to deduce that P(x; k) is affinely 

nonkinetic (see Definition 3.6), given the 

constraints.  

(a) If P(x; k) is not affinely nonkinetic, attempt 

to find an affine transformation Ψ = ΨA such 

that (i)–(ii) are satisfied. 

 (b) If P(x; k) is affinely nonkinetic, or if 

application of Theorem 3.1 is computationally 

too complicated, then choose kinetic 

transformation Ψ satisfying (i)–(ii) as an 

appropriate composition of ΨA, ΨX and 

ΨQSSA, where ΨX is an x-factorable 

transformation (see Section 3.2.2) and ΨQSSA 

is a quasi-steady state transformation (see 

Section 3.2.3, in particular Corollary 3.1).  

3. Construction of a reaction network:  

Use Definition 3.1 to construct the canonical 

reaction network RK−1 . 

Algorithm 1: Three steps of the solution to the 

inverse problem of finding reaction systems 

undergoing a supercritical homoclinic 

bifurcation. 

4.2 Step (1): construction of polynomial 

function P(x; k) 

 Definition 4.2. A version of a plane algebraic 

curve called Tschirnhausen cubic (also known 

as Catalan’s trisectrix, and l’Hospital’s cubic) 

[33] given by: 

 

is referred to as the alpha curve. The part of 

the curve with x2 < 0 is called the alpha loop, 

while the part with x2 > 0 is called the alpha 

branches, with the branch for x1 < 0 being the 

negative alpha branch, and for x1 > 0 being the 

positive alpha branch. Solutions x1 of equation 

(4.1) are denoted x ± 1 = ±x2 √ 1 + x2.  

The α curve is shown in Figure 1(a), with x − 

1 plotted as the solid purple curve, and x + 1 as 

the dashed green curve. It can be seen that the 

curve consists of the tear-shaped alpha loop 

located in region [−2 √ 3/9, 2 √ 3/9]×[−1, 0], 

and the positive and negative alpha branch in 

the first and second quadrant, respectively. As 

is done in [21], the alpha curve is mapped into 

a system of polynomial ODEs. 

 

Figure 1: (a) The alpha curve (4.1), with 

branch x − 1 plotted as the solid purple curve, 

and branch x + 1 as the dashed green curve. 

(b) Phase plane diagram of system (4.2)–(4.3) 

for a = −0.8, with the stable node, the saddle, 

and the unstable spiral represented as the 

green, blue and red dots, respectively. The 

alpha curve is shown in purple, while the 

vector field as gray arrows. 

 Lemma 4.1. The two-dimensional polynomial 

ODE system 

 

contains the alpha curve (4.1) as phase plane 

orbits, with the alpha loop as a homoclinic 

orbit to the fixed point x ∗ = 0, provided a 2 < 

1. If a ∈ (−1, 0), the alpha loop is stable from 

the inside, and system (4.2)–(4.3) has three 

fixed points: a saddle at the origin, an unstable 

spiral inside the alpha loop, and a stable node 

on the positive alpha branch.  
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Proof. Setting P(x; k) = (P1(x; k),P2(x; k)) in 

system (3.3) to be a polynomial function of x = 

(x1, x2) with undetermined coefficients k, and 

requiring P ·∇H = 0, one obtains system (4.2)–

(4.3), as was done in [21]. As there is only one 

free parameter, denoted a, we write: P(x; k) = 

P(x; a). System (4.2)–(4.3) has three fixed 

points: 0, 0  , 2a/9, −2/3  , and a −1 (1−a −2 ), 

−1 +a −2  . The condition a 2 < 1 ensures that 

fixed points 2a/9, −2/3  and a −1 (1 − a −2 ), 

−1 + a −2  are not on the alpha loop. The 

Jacobian J = ∇P(x; a) is given by 

 

.4) Let the determinant and trace of J be 

denoted by det(J) and tr(J), respectively. Fixed 

point 0, 0  is a saddle, since det(J) = a 2 − 1 < 

0. The saddle quantity from Andronov-

Leontovich theorem in B is given by σ0 = λ1 + 

λ2 = (a − 1) + (a + 1) = 2a, were λ1 and λ2 are 

the saddle eigenvalues. The alpha loop is 

stable from the inside provided σ0 < 0, 

implying a < 0. It then follows that 2/9a, −2/3  

is an unstable spiral, and a −1 (1 − a −2 ), −1 + 

a −2  a stab 

A representative phase plane diagram of 

system (4.2)–(4.3) is shown in Figure 1(b). 

Note that a part of the positive alpha branch x 

+ 1 is a heteroclinic orbit connecting the 

saddle and the node. The distance between the 

saddle and the node is given by d(a) = a −3 (1 

− a 2 ) √ 1 + a 2, so that lima→0 d(a) = +∞ 

and lima→−1 d(a) = 0, i.e. increasing a 

increases length of the heteroclinic orbit by 

sliding the node along x + 1 .  

System (4.2)–(4.3) satisfies the first three 

conditions of Andronov-Leontovich theorem 

in B. In order to satisfy the final condition, a 

set of perturbations must be found that destroy 

the alpha loop in a generic way, and this is 

ensured by the Melnikov condition (B.1). The 

bifurcation parameter controlling the existence 

of the alpha loop is denoted as α ∈ R. Note 

that P(x; a) perturbed by a function of the form 

α∇H(x1, x2) = α(−2x1, 2x2 + 3x 2 2 ) satisfies 

the Melnikov condition [21], but P(x; a) + 

α∇H(x1, x2) has three terms dependent on α. 

In the following theorem, a simpler set of 

perturbations is found, introducing only one α 

dependent term in system (4.2)–(4.3). 

Theorem 4.1. If a perturbation of the form 

(αf(x1), 0)T , where α ∈ R, is added to the 

RHS of system (4.2)–(4.3), and if f(x1) is an 

odd function, f(−x1) = −f(x1), and f(x1) 6= 0, 

∀x1 ∈ [−2 √ 3/9, 0), then the perturbed system 

undergoes a supercritical homoclinic 

bifurcation in a generic way as α is varied in 

the neighbourhood of zero. 

 Proof. Consider the perturbed version of 

system (4.2)–(4.3): 

 

Melnikov integral (B.1) for system (4.5)–(4.6) 

is given by 

 

Using (4.6), we have P2(x1, x2; a)dt = dx2. 

Thus we can express M(0) in terms of x2 as 

follow: 

 

2, where t +(x2) (resp. t −(x2)) is the 

dependence of time t on x2 along the positive 

(resp. negative) alpha branch for the trajectory 

which is at point (x1, x2) = (0, −1) at time t = 

0 (for α = 0). Since f is odd and ϕ(t ±) > 0, we 

ded 

 

6= 0. For further simplicity of (4.5)–(4.6), 

function f(x1) is set to f(x1) = x1 in the rest of 

this 
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4.3 Step (2): construction of kinetic function 

K(¯x; ¯k) 

 The RHS of system (4.5)–(4.6), P(x; a, α), is a 

kinetic function. However, the alpha loop, 

which is the region of interest, is not located in 

the nonnegative orthant. In order to position 

the loop into the positive orthant, we will 

apply affine transformations. First, we show 

that system (4.5)–(4.6) with the homoclinic 

orbit in nonnegative orthant is nonkinetic 

under all translation transformations for a ∈ 

(−1, 0), α ∈ R.  

Lemma 4.2. Function P(x; a, α), given by the 

RHS of (4.5)–(4.6), is nonkinetic under all 

translation transformations ΨT , for a ∈ (−1, 0) 

and α ∈ R, given the condition that the 

homoclinic orbit is mapped into R 2 >.  

Proof. Let us apply the translation 

transformation ΨT (see Definition 3.5), T = 

(T1, T2) ∈ R 2 , on function P(x; a, α), given 

by the RHS of (4.5)–(4.6), resulting in: 

 

with ¯x = x + T , and coefficients k¯ = k¯(a, α, 

T ) given by 

 

Consider the point x0 = (0, −1), which is on 

the alpha loop. It is mapped by ΨT to the point 

¯x0 = (T1, −1 + T2). Requiring that the alpha 

loop is mapped to R 2 > implies that we must 

have ¯x0 ∈ R 2 >, so that the following set of 

constraints (see Definition 3.3) must be satisfie 

 

Using the fact that a ∈ (−1, 0) and the 

constraints (4.9), it follows that ¯k 2 0 from 

(4.8) is negative, ¯k 2 0 < 0. Thus, (ΨT P)(¯x; 

k¯) has a cross-negative term, and the 

statement of the theorem follows.  

One can also readily prove that P(x; a, α) is 

nonkinetic under all affine transformations for 

|a|  1, and |α|  1. Thus, in the next two sections, 

we follow Step (2), case (b), in Algorithm 1, 

applying transformations ΨX and ΨQSSA on 

the kinetic function (ΨT P)(¯x; k¯) given by 

(4.7). We require the following conditions to 

be satisfied 

 

with the set of constraints Φ ensuring that the 

homoclinic orbit is in R 2 >. The reason for 

requiring |α| 1 is that then the following results 

are more readily derived, and the condition is 

sufficient for studying system (4.7) near the 

bifurcation point α = 0. A representative phase 

plane diagram corresponding to the ODE 

system with RHS (4.7) is shown in Figure 

2(a), with fixed points, the alpha curve, and 

the vector field denoted as in Figure 1(b), and 

with the red segments on the axes 

corresponding to the phase plane regions 

where the cross-negative effect exists (see 

Definition 2.9). 

4.3.1 X-factorable transformation  

Let us apply the x-factorable transformation 

ΨX on system (4.7). Letting ΨX,T ≡ ΨX ◦ ΨT 

, the resulting kinetic function KX,T (¯x; k¯) ≡ 

(ΨX,T P)(¯x; k¯) is given by 

 

Theorem 4.2. ODE systems with RHSs (4.7) 

and (4.11) are topologically equivalent in the 

neighbourhood of the fixed points in R 2 >, 

with the homoclinic orbit in R 2 >, and a 

saddle at the origin being the only boundary 

fixed point in R 2 ≥, if: 
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Proof. Let us assume α = 0.  

From statement (i) of Theorem 3.3 it follows 

that the saddle fixed point of (4.7) is preserved 

under ΨX . Denoting the node and spiral fixed 

points of (4.7) by ¯x ∗ nd and ¯x ∗ sp, 

respectively, one finds that the Jacobian is 

given by: 

 

Conditions (ii) and (iii) of Theorem 3.3 are 

both satisfied for the node, but only condition 

(ii) is satisfied for the spiral. The condition for 

the spiral to remain invariant is obtained by 

demanding disc(JX,T |¯x=¯x∗ sp ) < 0, where 

JX,T is the Jacobian of (4.11), and, taking into 

consideration (4.10), this leads to 

 

Boundary fixed points are given by (0, 0), 

(T1+a −1T2, 0), (0, 1/2(1± √ 1 + 

4a−1T1)+T2). The second fixed point can be 

removed from the nonnegative quadrant by 

demanding T2 > −aT1, while the pair of the 

last ones always has nonzero imaginary part 

due to (4.10). Statement (iv) of Theorem 3.3 

implies that the eigenvalues at the origin are 

given by λ1 = k 1 0 = 3/2(T2 − 2/3)(aT1 + T2) 

> 0 and λ2 = k 2 0 = −T1 + aT2(T2 − 1) < 0, 

so origin is a saddle fixed point. 

 As α can be chosen arbitrarily close to zero, 

and as KX,T (¯x; k¯) is a continuous function 

of α, the theorem holds for sufficiently small 

|α| 6= 0, as well.  

A representative phase plane diagram 

corresponding to the ODE system with RHS 

(4.11) is shown in Figure 2(b), where the 

saddle fixed point at the origin is shown as the 

black dot. It can be seen that one of the stable 

manifolds of the nonboundary saddle, 

represented as a dashed purple curve, 

approaches x2-axis asymptotically, instead of 

crossing it as in Figure 2(a).  

The homoclinic orbit of the ODE system with 

RHS (4.11) is positioned below the node in the 

phase plane. Suppose the relative position of 

the stable sets is reversed by, say, applying an 

improper orthogonal matrix with the angle 

fixed to 3π/2, ΨQ3π/2− , with a representative 

phase plane shown in Figure 2(d). In this case, 

one can straightforwardly show that the 

boundary fixed point given by T1 + 1/2(1 + √ 

1 − 4a−1T2), 0  , shown as the black dot in 

Figure 2(d), cannot be removed from R 2 ≥, 

and is always a saddle. The same conclusions 

are true for other similar configurations of the 

stable sets obtained by rotations only. This 

demonstrates that x-factorable transformation 

can produce boundary artefacts that have a 

significant global influence on the phase 

curves, that cannot be eliminated by simply 

translating a region of interest sufficiently far 

away from the axes. In order to eliminate the 

particular boundary artefact, a shear 

transformation may be applied. Consider 

applying ΨX,T ,Q3π/2−,S2 = ΨX ◦ ΨT ◦ 

ΨQ3π/2− ◦ ΨS2 on (4.5)–(4.6), where 

 

and T1 = T2 ≡ T ∈ R, for simplicity, leading to 

 

where the coefficients k¯ = k¯(a, α, T ) are 

given by: 

 

Theorem 4.3. ODE systems with RHSs (4.5)–

(4.6) and (4.16) are topologically equivalent in 
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the neighbourhood of the fixed points in R 2 >, 

with the homoclinic orbit in R 2 >, and a 

saddle at the origin and a saddle with 

coordinates (0, 1/2T a −1 (1 + 2a)) being the 

only boundary fixed points in R 2 ≥,if; 

 

18) Proof. Following the same procedure as in 

the proof of Theorem 4.2, and noting that the 

saddle, node and spiral fixed points are given 

by T , T  , T − 2a −2 (1 − a 2 ), T + a −3 (1 − a 

2 )  , and T + 2/9(3+a 2 ), T −2/9a  , 

respectively, while the five boundary fixed 

points are (0, 0), (T + 1/2 5T a± p T (8a−1(1 − 

a 2) + 9T a 2)  , 0), (0, 1/2T a −1 (1+2a)), (0, 

a−1 2/3+T (1+a)  ), one finds (4.18).  

Note that as α → −1 2 , the only boundary 

fixed point in R 2 ≥ is a saddle at the origin, 

and it is connected via a heteroclinic orbit to 

the saddle in R 2 >. A representative phase 

plane diagram corresponding to the ODE 

system with RHS (4.16) is shown in Figure 

2(c).  

While systems (4.11) and (4.16) contain 

specific variations of the specific homoclinic 

orbit given by (4.1), they, nevertheless, 

indicate possible phase plane topologies of the 

kinetic containing homoclinic orbits of shapes 

similar to (4.1). With a fixed shape and 

orientation of a homoclinic loop which is 

similar to (4.1), three possible orientations of a 

corresponding saddle manifold in R 2 > are: it 

may extend in R 2 > without asymptotically 

approaching a phase plane axis, it may 

asymptotically approach an axis, or it may 

cross an axis at a fixed point. In Figure 2(b), a 

combination of the first and second orientation 

is displayed, while in Figure 2(c) of the first 

and third orientation. 

4.3.2 The quasi-steady state transformation  

In Lemma 4.2, it was demonstrated that 

system (4.5)–(4.6) has at least one cross-

negative term under translation 

transformations. It can be readily shown that 

system (4.5)–(4.6) in fact has minimally two 

cross-negative terms under translation 

transformations, ¯k 1 2 < 0 and ¯k 2 0 < 0, and 

this is the case when a ∈ (−1, 0), Φ = {T1 ∈ 

(2√ 3/9, −T2a), T2 > 1}. Let us apply a 

quasisteady state transformation ΨQSSA on 

system (4.7) that eliminates the two cross-

negative terms, i.e. two new variables are 

introduced, ¯y1, y¯2 ∈ R 2 >, and we take 

p1(¯x) = p2(¯x) = 1, in Definition 3.8. Letting 

ΨQSSA,T ≡ ΨQSSA ◦ ΨT , the resulting 

kinetic function KQSSA,T ({x, ¯ y¯}; ¯k, ω, 

µ) ≡ ΨQSSA,T P)({x, ¯ y¯}; ¯k, ω, µ) is given 

b 

 

with ¯xn(0) > 0, ωn > 0, n = 1, 2, and µ → 0.  

In (4.19), limxn→0 limµ→0 yn = +∞, n = 1, 2, 

and a geometrical implication is that, say, the 

saddle manifold crossing the x2-axis in Figure 

2(a), instead asymptotically approaches the y1-

axis. The asymptotic behavior of the saddle 

manifolds is achieved by the additional 

(boundary) fixed points in (4.11) displayed in 

Figure 2(b), and by additional phase space 

dimensions in (4.19).  

Note that a composition an x-factorable and a 

quasi-steady state transformation may be used 

to make (4.7) kinetic. For example, one may 

eliminate the cross-negative term ¯k 1 2 in 

(4.7) by using the x1-factorable transformation 

ΨX1 , and the cross-negative term ¯k 2 0 by 

using an appropriate ΨQSSA. An example of a 

kinetic function obtained by a transformation 

of the form ΨQSSA,X1,T is given by 
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with ¯x2(0) > 0, ω > 0, and µ → 0. Note that 

the chosen ΨQSSA,X1,T does not introduce 

any additional fixed points when applied to 

system (4.7). 

4.4 Step (3): construction of the canonical 

reaction network RK−1  

Definition 3.1 can be used to map the kinetic 

functions (4.11), (4.16), (4.19), and (4.20) to 

the canonical reaction networks RK−1 . This is 

illustrated for (4.11) in this section, and for 

(4.16) and (4.20) in C. For clarity, both the 

induced kinetic equations and the induced 

canonical reaction networks are presented. 

Note that the reaction networks are assumed to 

be taking place in an open reactor, and are not 

necessarily purely chemical in nature. 

Nevertheless, the non-chemical processes 

present in kinetic equations are represented as 

quasi-chemical reactions. Such reactions take 

form of input/output of chemical species, as 

well as containing quasi-species that are time-

independent on a relevant time scale, so that 

their constant concentration is absorbed into a 

quasi-kinetics, leading to conservation laws 

not necessarily holding [1].  

Writing x ≡ ¯x, the induced kinetic equations 

for (4.11) are given by 

 

while the induced canonical reaction network: 

 

where k1 = | ¯k 1 0 |, k2 = | ¯k 2 0 |, k3 = | ¯k 1 

1 |, k4 = | ¯k 2 1 |, k5 = | ¯k 1 2 |, k6 = | ¯k 2 2 

|, k7 = | ¯k 1 12|, k8 = | ¯k 1 22|, k9 = | ¯k 2 

22|, with the coefficients k¯ given by (4.8), 

and the conditions given by (4.12). 

5 Summary 

In the first part of the paper, a framework for 

constructing reaction systems having 

prescribed properties has been formulated as 

an inverse problem and presented in Section 3, 

relying on definitions introduced in Section 2. 

As a part of the framework, in Section 3.2, 

kinetic transformations have been defined that 

enable one to map an arbitrary polynomial 

ODE system with a set of constraints, possibly 

containing the cross-negative terms, into a 

kinetic one. Augmented with the results from 

[16], such transformations can be applied to 

nonpolynomial systems as well. Systems for 

which no affine transformation is kinetic have 

been defined as affinely nonkinetic in Section 

3.2.1, to emphasize the fact that significant 

changes to their solutions are required. X-

factorable transformation [10], that does not 

change the dimension of the systems being 

transformed, but introduces a higher number 

of nonlinear terms and leads to autocatalytic 

reaction networks, has been defined in Section 

3.2.2, and its properties when applied on two-

dimensional systems have been derived in 

Theorem 3.3. The quasi-steady state 

transformation, that increases the dimension of 

the systems being transformed, but generally 

introduces a lower number of nonlinear terms, 

has been presented in Section 3.2.3, and 

justified using Tikhonov’s and Korzukhin’s 

theorems [11]. As the focus of the paper has 

been more placed on the construction of 

kinetic equations, and less on constructions of 

reaction networks, in Section 3.1 an analytical 

and algorithmic method for obtaining the so-

called canonical networks has been presented 

[4]. The framework may be used for 

constructing lower-dimensional reaction 

systems displaying exotic phenomena, with 

Algorithm 1 exemplifying the construction 

process. 
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In the second part of the paper, the inverse 

problem framework has been applied to a case 

study of constructing bistable reaction systems 

undergoing a supercritical homoclinic 

bifurcation, with a parameter controlling the 

stable sets separation, with an overview of the 

procedure presented in Section 4.1. In Section 

4.2, a polynomial ODE system having a 

homoclinic orbit in the phase plane has been 

constructed using the results from [21], and 

perturbed in such a way that the sufficient 

conditions for the existence of the homoclinic 

bifurcation are fulfilled, as required by 

AndronovLeontovich Theorem [24]. In 

Section 4.3, the kinetic transformations from 

Section 3 have been used in order to map the 

polynomial system to a kinetic one with the 

homoclinic orbit in the positive quadrant. The 

topological phase space effects produced by 

the kinetic transformations on the constructed 

systems have been discussed. In Section 4.4 

and C, the canonical reaction networks 

induced by some of the kinetic equations have 

been presented.  

In this paper, we have constructed chemical 

reaction networks inducing two-dimensional 

cubic kinetic functions with the deterministic 

ODEs (kinetic equations) undergoing a 

supercritical homoclinic bifurcation. In a 

future publication, we will report our results 

on the stochastic analysis of the constructed 

systems, consisting of examining the quasi-

stability of the limit cycle, and stochastic 

switching between the stable sets, as a function 

of the bifurcation parameter and the parameter 

controlling the stable set separation. A 

motivation for such a study is the fact that 

stochastic effects play an important role in 

systems biology due to the inherently small 

reactors [25, 27, 28, 29], and one might even 

say that systems biology has initiated a 

renaissance of the stochastic reaction kinetics 

[31]. 

A Oscillations in two-component 

bimolecular reaction systems with cross-

negative terms 

Theorem A.1: Consider a two-dimensional 

ODE system with a quadratic polynomial 

RHS, P(x; k) ∈ P2(R 2 ; R 2 ), k ∈ R 12: 

 

If k 1 11 ≤ 0 and k 2 22 ≤ 0, and if system 

(A.1) is nonnegative, then the system has no 

limit cycles. Proof. Considering x1, x2 > 0, 

writing P(x; k) = P1(x1, x2; k),P2(x1, x2; k)  , 

and letting the Dulac function to be given by 

B(x1, x2) = (x1x2) −1 , it follows that 

 

. Multiplying by −(x1x2) 2 , and defining a 

new function D¯(x1, x2; k) = −(x1x2) 2D(x1, 

x2; k), results 

 

. If k 1 11 ≤ 0 and k 2 22 ≤ 0, and if system 

(A.1) is nonnegative, so that P1(0, x2) ≥ 0 and 

P2(x1, 0) ≥ 0, then D¯ ≥ 0. The only case 

when a limit cycle may exist is if D¯ = 0 for 

all x1, x2 > 0, and in [20] it is shown that no 

limit cycles exist in this case.  

In [20], it was shown that the absence of cross-

negative terms in P(x; k) ∈ P2(R 2 ; R 2 ), with 

k 1 11 ≤ 0 and k 2 22 ≤ 0, implies the absence 

of limit cycles, i.e. one requires the more 

restrictive condition P(x; k) ∈ P K 2 (R 2 ≥; R 

2 ). Theorem A.1 shows that, in fact, absence 

of the cross-negative effect in P(x; k) ∈ P2(R 2 

; R 2 ), with k 1 11 ≤ 0 and k 2 22 ≤ 0, implies 

the absence of limit cycles, i.e. one requires 

the less restrictive condition P(x; k) ∈ P2(R 2 

≥; R 2 

B Andronov-Leontovich theorem 

Andronov-Leontovich theorem [24]: Consider 

system (3.3) with P(x; k, α) ∈ Pm(R 2 ; R 2 ), 
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m ∈ N, where α ∈ R is a bifurcation parameter. 

Let λ1(α) and λ2(α) be eigenvalues of the 

Jacobian corresponding to the two-

dimensional system (3.3), J = ∇P(x; k, α), and 

suppose that at α = 0, the following homoclinic 

bifurcation conditions (i)–(ii) are satisfied, and 

that (3.3) is generic, i.e. the following 

homoclinic genericity conditions (iii)–(iv) are 

satisfied:  

(i) System has a saddle fixed point x ∗ = 0 

with eigenvalues λ1(0) < 0 < λ2(0).  

(ii) System has a homoclinic orbit γ ∗ to the 

saddle fixed point x ∗ .  

(iii) Nondegeneracity condition: σ0 = 

λ1(0)+λ2(0) 6= 0, where σ0 ∈ R is called the 

saddle quantity. 

(iv) Transversality condition: Melnikov 

integral, M(α), along the homoclinic orbit 

satisfies: 

 

where ϕ(t) = exp − R t 0 (∇ · P(x; k, α)dτ , ϕ(t) 

> 0. This is equivalent to splitting of the 

homoclinic orbit at the bifurcation with a 

nonzero speed.  

Then, for all sufficiently small |α|, there exists 

a neighbourhood of the saddle fixed point and 

the homoclinic orbit such that a unique limit 

cycle bifurcates from γ ∗ . If σ0 < 0, the 

homoclinic bifurcation is supercritical, giving 

rise to a unique stable limit cycle, while if σ0 > 

0, the homoclinic bifurcation is subcritical, 

giving rise to a unique unstable limit cycle. 

C The canonical reaction networks induced 

by (4.16) and (4.20)  

Writing x ≡ ¯x, the induced kinetic equations 

for (4.16) are given by 

 

while the canonical reaction network: 

 

conditions given by (4.18). Note that by taking 

a ∈ − 8 9 , 1 5 (2 − √ 34) and T = − 2 3 (2 + 

3a) −1 , it follows that k4 = 0.  

Writing x ≡ ¯x, the induced kinetic equations 

for (4.20) are given b 

 

while the canonical reaction network 
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