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ABSTRACT 

A graph is a collection of nodes and lines that we call vertices and edges,  respectively. A graph 

can be labeled or unlabeled. In this thesis, we are interested in  labeled graphs. In many labeled 

graphs, the labels are used for identification only.  The kind of labeling we are interested in can 

serve dual purposes: Labeling can be  used not only to identify vertices and edges, but also to 

signify some additional  properties, depending on the particular labeling.  The study of graph 

theory was born in the 18th century when the citizens of  Konigsberg tried to solve the problem 

of traversing the 7 bridges on the Pregel river.  They wondered if they could walk and cross 

every bridge exactly once and finish  back at the starting point. Using graph representation, the 

well known mathematician  Euler found that it is impossible to do it. However, it is fair to say 

that the formal  and systematical study of graph theory began with D. Konig's book in 1935.   
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INTRODUCTION 

Graph theory has rigorous applications in diversified fields like operations  research, 

genetics, computer technology, physics, chemistry, communication  networks, electrical 

network, economics and social sciences. There are many  research topics in graph theory. Some 

of the major themes in graph theory are Graph  coloring, Spanning trees, Planar graphs, 

Networks, Eulerian tours, Hamiltonian  cycles, Matching, Domination theory and Graph 

labeling. Most of these topics have  been widely discussed in the literature [13, 20,73].  

 

LABELING OF GRAPHS   

In the theory of graph labeling the labels are always mathematical objects  which may be 

integers, prime numbers, modular integers, or elements of a group.  A lot of research has been 

done in the topic of labeling of graphs. The study of graph  labeling has focused on finding 

classes of graphs which admit a particular type of  labeling. Many practical problems in real life 

situations have motivated the study of  labeling of a graph subject to certain conditions. A 

systematic presentation of  applications of graph labeling is given in [17].   

The concept of labeling of graphs has recently gained a lot of popularity in  the area of 

graph theory. Most of the graph labeling method trace their origin to one  introduced by Rosa 

[36]. A graph labeling is an assignment of integers to the  vertices or edges or both subject to 

certain conditions. Labeled graphs serve as  useful models in a broad range of applications. Over 

the past five decades various  labeling of graphs such as cordial labeling, prime labeling, magic 

labeling,  antimagic labeling, bimagic labeling, mean labeling, arithmetic labeling, 

graceful  labeling, harmonious labeling etc., have been studied extensively in the literature  [17]. 
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Some graph labeling for the class of competition graph is also studied in the  literature 

[10].Throughout the thesis, we consider finite simple and undirected  graphs with p vertices and 

q edges.   

1.3 GRACEFUL GRAPHS   

A. Rosa introduced a labeling function f from a set of vertices in a graph G  to the set of 

integers {0, 1, 2,….., q }, where q is the number of edges in G, so that each edge xy is assigned 

the label | f(x) - f(y) | , with all labels distinct. Rosa called  this labeling as ȕ valuation. 

Independently, Golomb [19] studied the same type of  labeling and called the labeling as 

graceful labeling and this is now the popular  term.   

The Ringel-Kotzig conjecture (GTC) that all trees are graceful has been the  focus of 

many papers. Apart from the theoretical developments, researchers have  been trying to find 

applications of graph labeling. Applications of graph labeling  have been found in X-ray 

crystallography, coding theory, radar, circuit design,  astronomy and communication design. 

Some interesting applications of graph  labeling can be found in the literature.   

Generally, there are two main basic reasons for developing a theory. First,  we may need 

a new theory to solve a problem. An example of this is graceful  labeling that was developed to 

solve the problem of the decomposition of a complete  graph into isomorphic subgraphs. Second, 

the development of a new theory comes  from human curiosity. An example of this is magic 

labeling. In this thesis, we are  mainly driven by the second reason.   

 

MAGIC AND ANTIMAGIC GRAPHS   
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Interestingly, in 1963 Sedlacek published a paper about another kind of  graph 

labeling[38]. He called the labeling magic labeling. It was motivated by the  magic square notion 

in number theory. The weight of a vertex v in G under an edge  labeling is the sum of edge labels 

corresponding to all edges incident with v. If all  vertices in G have the same weight k, we call 

the labeling as vertex-magic edge  labeling. If all vertices in G have different weights, then the 

labeling is called vertex antimagic edge labeling. The weight of a vertex v in G under a total 

labeling is  defined as the sum of the label of v and the edge labels corresponding to all 

the  edges incident with v. If all vertices in G have the same weight k, we call the  labeling 

vertex-magic total labeling. If all vertices in G have different weights, then  the labeling is called 

vertex-antimagic total labeling.   

The weight of an edge e under a vertex labeling is defined as the sum of the  vertex labels 

corresponding to every vertex incident with e. If all edges in G have  the same weight k, we call 

the labeling as edge-magic vertex labeling. If all vertices  in G have different weights, then the 

labeling is called edge antimagic vertex  labeling. The weight of an edge e under a total labeling 

is defined as the sum of the  label of e and the vertex labels corresponding to every vertex 

incident with e. If all  edges in G have the same weight k, we call the labeling as edge-magic 

total labeling.  If all vertices in G have different weights, then the labeling is called edge 

antimagic  total labeling.  

 

 LABELINGS IN CAYLEY DIGRAPHS   

In 1878, Cayley constructed a graph for a given group with a generating set  which is 

now popularly known as Cayley graphs. A directed graph or digraph  G(V,E) consists of a finite 
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set of points called vertices and a set of directed arrows  between the vertices. Let G be a finite 

group and S be a generating subset of G. The  Cayley digraph denoted by Cay(G,S), is the 

digraph whose vertices are the elements  of G, and there is an arc from g to gs whenever g א G 

and s א S. If S = S-1 then  there is an arc from g to gs if and only if there is an arc from gs to g. 

The Cayley  graphs and Cayley digraphs are excellent models for interconnection networks 

[2].  For example hypercube, butterfly, and cube-connected cycle’s networks are Cayley  graphs 

[22].   

Though different kinds of labeling were studied and many conjectures were  made for 

different subclasses of graphs, the labeling of well known graph namely  Cayley graphs has not 

been investigated until a new labeling namely super vertex  (a,d)–antimagic labeling for digraphs 

was introduced in [68]. Moreover the  existence of super vertex (a,d)-antimagic labeling and 

vertex magic total labeling for  a certain class of Cayley digraphs has been investigated in the 

literature [68].  Thamizharasi and Rajeswari studied magic labelings of Cayley digraphs and 

its  line digraphs[60]. K.Thirusangu et al. studied super vertex (a,d) antimagic labelling  and 

vertex magic total labelling of certain classes of Cayley digraphs[66].  K.Thirusangu and E.Bala 

obtained magic and antimagic labelings in Cayley  digraphs of 2-generated p-groups [ 65] . The 

Product antimagic labelings in Cayley  digraphs of 2-generated 2-groups has also been studied in 

the literature [ 67].  

COMPLEMENTARY SUPER EDGE MAGIC LABELING   

we concentrate on super- edge magic labeling  and complementary super- edge magic labeling 

for connected graphs. The existing  section is followed by introduction and section 2.2 bears the 

introductory part of  complementary super- edge magic labeling which shows the existing of 
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this  labeling for certain graphs such as for cycle Cn for odd n and for the ladder graph. 

Previously, the results of this section have been published in International Journal of  Applied 

Science & Technology Research Excellence and IJAET. In section 2.3, we  deal with 

complementary super- edge magic labeling for the generalized prism  Cm  X Pn and G ≅T (n, n, 

n-1, n, 2n-1). The results of this section have been  published in IJIRSET. In last section, we 

define complementary super edge magic  labeling for (n, t)- kite ( where t=2) graph and union of 

complete graph K2 and  cycle Cn (where n is even and n ≠10) i.e. G = P2  ∪ Cn .  

 In 1976, Kotzing and Rosa [118] introduced edge-magic labelings.  Interest in magic labelings 

has been lately rekindled by a paper on the subject (EMT labeling) due to Ringel and Llado 

[167].   

The notion of magic strength introduced by Kong, Lee and Sun [116] was  extended to 

edge- magic graphs and super edge- magic graphs by S. Avadayappan,  P. Jayanthi and R. 

Vasuki [ 18, 19]. They proved the following theorem 

 In next two Figures, we depict SEM labeling and CSEM labeling  of the ladder graph L5 with 

sems = 28 and csems = 44 respectively. 

 

 

 Figure 2.8 : Super edge magic labeling for L5 with sems = 28 
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Figure 2.9: Complementary super edge magic labeling for L5 with csems = 44 

 ZERO EDGE MAGIC AND n-EDGE MATIC GRAPHS   

PRELIMINARIES   

In this section we give the basic notions relevant to this paper. Let  G = G(V,E) be a 

¿nite, simple and undirected graph with p vertices and q edges. By  a labeling we mean a one-to-

one mapping that carries a set of graph elements onto a  set of numbers called labels (usually the 

set of integers). In this paper, we deal with  vertex labeling with domain as the set of all 

vertices.   

The vertex-weight of a vertex v in G under an edge labeling to be the sum of  edge labels 

corresponding to all edges incident with v. Under a total labeling, vertex weight of v is de¿ned as 

the sum of the label of v and the edge labels corresponding  to all the edges incident with v. If all 

vertices in G have the same weight k, we call  the labeling vertex-magic edge labeling or vertex-

magic total labeling respectively  and we call k a magic constant. If all vertices in G have 

different weights, then the  labeling is called vertex-antimagic edge labeling or vertex-antimagic 

total labeling  respectively.   

The edge-weight of an edge e under a vertex labeling is de¿ned as the sum of  the vertex 

labels corresponding to every vertex incident with e. Under a total labeling, we also add the label 

of e. Using edge-weight, we derive edge-magic  vertex or edge-magic total labeling and edge-

antimagic vertex or edge-antimagic  total labeling.   

http://www.ijfans.org/
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A (p,q)-graph G is said to be (1,0) edge-magic with the common edge count  k if there 

exists a bijection f : V (G) ĺ {1,2,...,p} such that for all e = (u,v) א E(G),  f(u) + f(v) = k. It is said 

to be (1,0) edge-antimagic if for all e = (u,v) א E(G),f(u) +  f(v) are distinct.   

ZERO EDGE MAGIC GRAPHS   

A complete n-ary pseudo tree is 0-edge magic.  

Proof: Let G be a complete n-ary pseudo tree of height h. Clearly the vertices in  level li 

are adjacent to some vertices in level (i - 1) and some vertices in level (i + 1)  for 1 ≤ i ≤(h - 1). 

This is true for all level except the root level l0 and the leaf level  lh. Label the vertices in ith level 

as -1 when i ≡ 1(mod2) and label the remaining  vertices as 1.   

Therefore, all the vertices in level i have label -1 when i is odd and the  vertices in i - 1th 

level have label 1. The edges incident at ith level vertices has the  label zero. If the height of the 

tree h is odd , The (h – 1)th level is even and the  vertices at level h is adjacent to the vertices in 

(h – 1)th level.   

The edges incident at level h has label 0. Clearly the root vertex is adjacent  to the first 

level vertices, the edges incident with root vertex has label zero. Thus all  the edges in n -ary 

pseudo tree has label zero and hence G is zero edge magic.  
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Figure 3.2.1: n-ary psudo tree   

 n - EDGE MAGIC GRAPHS   

Definition 3.3.1   

A (p,q)-graph G is said to be n- edge magic if there exists a surjective  f : V (G) → {n + 

1,-1} such that for each uv א E(G),f(u) + f(v) = n   

Theorem 3.3.2  

A complete k- ary tree is n-edge magic.   

Proof: Let G be a complete k- ary tree of height h. Clearly the vertices in level li are 

adjacent to some vertices in level (i - 1) and some vertices in level (i + 1) for 1 ≤ i ≤ (h - 1). 

This is true for all the vertices except the vertices in root level l0 and the  leaf level lh. Label the 

vertices in ith level as -1 when i ≡ 1(mod 2) and label the  remaining vertices as n + 1.   

Therefore, all the vertices in level i have label -1 when i is odd and the vertices in (i-1)th 

level have label n+1. The edges incident at ith level vertices has  the label n. If the height of the 
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tree h is odd , the (h -1)th level is even and the  vertices at level h is adjacent to the vertices in (h - 

1)th level.   

The edges incident at level h has label n. Clearly the root vertex is adjacent  to the first 

level vertices, the edges incident with root vertex has label n. Thusall the  edges in a complete k- 

ary tree has label n and hence G is ní edge magic.   
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