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INTRODUCTION 

The branch of mathematics concerned with networks of points connected by lines is known as 

graph theory. It has been discovered numerous times independently from a variety of leisure 

math challenges. Indeed, the subject is first mentioned in the work of Euler (1707-1782), the 

Father of Graph Theory and Topology, who answered a renowned unsolvable problem of his day 

called the Konigsberg Bridge problem in 1736. Euler proved the first theorem in graph theory by 

solving this riddle.For the next 100 years, nothing was done in the field after Euler's work. G.R 

Kirchhoff (1824-1887) created the tree theory in 1847 to solve the system of simultaneous linear 

equations that determine the current in each branch and circuit of an electrical network. Cayley 

(1821-1895) developed the significant class of graphs known as trees ten years later by using 

differential calculus to study the change of variables. Later, he worked on enumerating the 

isomers of the saturated hydrocarbons CnH2n+2, which have a fixed number of carbon 

atoms.Jordan (1869) was the first to recognise trees as a purely mathematical study. In addition, 
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the game devised by Sir William Hamilton in 1859 gave rise to the key Graph Theory concepts 

of Hamiltonian pathways and Hamiltonian cycles. 

 

How Graph Theory is Connected to Other Subjects?  

Graph theory was discovered by the realm of theoretical research for its own purposes. 

The points represent molecules in Uhlenbeck's statistical mechanics investigation, and two 

neighbouring points suggest nearest neighbour interaction of some type (for example the 

magnetic attraction or repulsion). Another application of graph theory in physics is as a visual 

aid. The figure proposed by Feynmann has points representing physical particles and lines 

representing particle pathways after collisions. 

Planarity has profound chemical ramifications in 19th century chemistry, where lettered 

vertices signify individual atoms and connecting lines denote chemical bonds (with degree 

corresponding to valence). The 19th century Englishman James Sylvester, one of numerous 

mathematicians interested in counting certain sorts of diagrams representing molecules, is 

credited with the first usage of the term graph theory in this context. 

For example, the many computers in a building and peripheral devices such as printers 

and plotters can be connected via local area networks based on any of the following strategies. 1. 

The network of stars 2. The ring system 3. A combination of the first two..  

                                                           

Star network                                                   Ring network  

Figure 1.1: Some Local Area Networks  
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Figure 1.2: Hybrid of star and ring networks 

In a parallel algorithm, a single instruction stream directs the input and output of sub 

problems to the appropriate processors and regulates the execution of the algorithm by delivering 

sub problems to different processors. When using parallel processing, one CPU may require 

output from another processor. As a result, these processors must be linked together. As a result, 

we can utilise the proper graph type to represent the interconnection networks. Below is a list of 

the most regularly used types..  

1.1.4 A Two-way Link Between Each Pair of Processors  

This is represented by Kn, the complete graph on n vertices.  

1.1.5 Linear Array  

Each processor Pi, i = 2, 3, .. . ,n−1 is connected to its neighbors Pi−1 and Pi+1 through a 

two-way link. P1 is connected to P2 and Pn is connected to Pn−1.  

 

Figure 1.3: A linear array for six processors.  

1.1.6 The Mesh Network (Two Dimensional Array)  
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In such a network the number of processors is a perfect square, say n = m2. The n 

processors are labeled as P(i, j) for (0 ≤ i ≤ m − 1), (0 ≤ j ≤ m − 1). Two way links connect 

processors P(i, j) as shown in figure for n = 16. 

GRAPH COLORINGS  

THE ORIGIN OF CHROMATIC GRAPH THEORY  

The origins of chromatic graph theory can be traced back to 1852, when Augustus De 

Morgan wrote a letter to his friend William Rowan Hamilton, informing him that one of his 

students had noticed that only four colours were required to colour a map of England, ensuring 

that neighbouring countries could be assigned different colours. Hamilton was uninterested in the 

four-color conjecture, which claimed that any map could be coloured with four colours in this 

fashion. This nugget of mathematical knowledge was practically forgotten until C.S. Peirce 

delivered a proof in a Harvard seminar in the 1860s. The conjecture gained traction in 1878, 

when Arthur Cayley inquired whether it had been settled at a meeting of the London 

Mathematical Society. Cayley quickly followed up with a short message outlining the problem 

and pointing out the problems. A few months later, a putative proof of the four-color conjecture 

emerged in the newly created American Journal of Mathematics. This was A. B. Kempe's 

famous erroneous proof, which lasted over ten years before the error was revealed. 

In 1880, the first paper with edge colorings was published. P.G.Tait, Professor of Natural 

Philosophy at the University of Edinburgh, outlined some additional proofs of the four-color 

conjecture in these papers, and deduced that the edges of every cubic map can be coloured with 

only three colours in such a way that the three edges meeting at each vertex are assigned 

different colours. He also asserted the reverse result without proof, claiming (incorrectly) that the 

edges of every cubic map may be coloured with three colours by induction, resulting in a 

straightforward proof of the four-color conjecture. 

P.J. Haewood presented an important study in 1890 rejecting Kempe's demonstration and 

demonstrating that any map's countries may be coloured properly with five colours. He followed 

up eight years later with the first in a series of papers in which he reconstructed Tait's concepts in 
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terms of congruences. The idea behind this method is to assign one of the numbers +1 or 1 to 

each vertex of a cubic map so that the sum of the numbers around each region of the map equals 

0. (mod3). The four-color conjecture is true, according to Haewood, if and only if every set of 

congruences obtained in this method has a non-trivial solution. Following Julius Petersen's work 

on graph factorization, D. K. onig established that if G is any bipartite graph or multigraph and 

its greatest valency is, then the edges of G may be coloured with exactly colours in such a way 

that all of the edges meeting at any vertex are coloured differently. 

Scheduling of Final Exams  

A graph model can be used to address the scheduling problem, with vertices representing 

courses and edges connecting them if there is a common student in the courses they represent. 

Each hue represents a distinct time window for a final exam. The colouring of the accompanying 

graph corresponds to the exam timetable. 

Consider the following scenario: there are seven finals to be planned. Assume the classes 

are numbered 1 through 7. Assume that the students in the following pairs of classes are the 

same..  

1 and 2, 1 and 3, 1 and 4, 1 and 7.  

2 and 3, 2 and 4, 2 and 5, 2 and 7. 

.  
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                                  Figure 2.1: Graph model showing scheduling.  

Since the chromatic number of the above graph is 4, four time slots are needed. One can 

arrange them as follows:  

 

Let G = (V (G), E(G)) be a graph with V as the vertex set and E as the edge set. The 

vertices and edges of a graph G are coloured with k colours so that no two neighbouring or 

incident elements have the same colour. The least k such that G has a k-total colouring is the 

total chromatic number ′′(G) of G. If the number of vertices and edges coloured with each hue 

differs by no more than one, the overall colouring is equitable [18, 26, 28, 36, 51, 53]. Equitable 

total chromatic number, represented by ′′=, is the smallest k for which G has such a colouring 

(G). 

The difficulty of eq uitable division of a system with binary conflicting relations into 

conflict-free sub-systems can occur in some discrete industrial systems. Equitable graph 

colouring can be used to model such scenarios. 

For example, in the garbage collection problem [52], the vertices of the graph represent 

garbage collection routes, and pairs of vertices are connected by an edge if the corresponding 

routes should not be run on the same day. As a result, the problem of assigning one of the six 

days of the work week to each route reduces to the problem of graph colouring. In practise, 

having a roughly equal number of routes run on each of the six days could be preferable. As a 

result, six colours must be used to colour the graph in an impartial manner. 

http://www.ijfans.org/


Research Paper 

e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 
© 2012 IJFANS. All Rights Reserved 

 

355 
 

Scheduling the timetabling is another application of equitable edge-coloring. For 

example, if we want to build university timetables with the same amount of lectures for every 

class and every instructor every day, we must first construct a bipartite graph G(X, Y), where X 

is the set of vertices relating to teachers and Y is the set of vertices pertaining to classes. If and 

only if the class y has lectures with teacher x, two vertices x X and y Y are connected by an 

edge. The difficulty of determining a “equitable” schedule is reduced to a fair edge-coloring of 

G. (X, Y ). 

 

Certain apparent results may be seen: I =(Kn) = n, (ii) =(Kn,n) = 2, (iii) =(Pn) = 2 and 

hence (iv) = (L(Pn)) = 2. 

.The Equitable ∆-Coloring Conjecture  

In contrast to common appropriate graph colouring, equitable colouring lacks 

monotonicity; that is, a graph can be equitable k-colorable without being equitable (k + 1)-

colorable. As a result, the ECC hides the true nature of the equitable coloration. It appears that 

the maximum degree is important in this case. Chen, Lih, and [9] proposed the following after 

reviewing relevant evidence. 

Let G be a connected graph, and the Equitable-Coloring Conjecture (ECC) be true. G is 

equitably (G)-colorable if it is not a complete graph, an odd cycle, or a complete bipartite graph 

K2m+1,2m+1. 

The ECC's conclusion is equivalently written as = (G) (G). The fact that the ECC implies 

the ECC is likewise obvious. If the ECC is valid for regular graphs, it is also true for non-regular 

graphs. The ECC was established by Chen, Lih, and Wu [7] for graphs with a maximum degree 

of at least one-half of the order. The basic tools for the answer were provided by the following 

two lemmas. G is used to represent G's complement graph. The lowest degree and edge-

independence number of G are denoted by (G) and ′(G), respectively. 

2.6 MISCELLANEOUS RESULTS  
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Let Kn1,n2,...,nt denote the complete t−partite graph whose parts have sizes n1, n2, · · · , nt. 

Chen and Wu [12] proved the following two theorems. 

 

Take two graphs G1 and G2. The cartesian product of the vertex sets V (G1) × V (G2) to 

be the vertex set of a new graph. There are several ways to define the edge set of a product 

graph. Let us introduce two products [40], the square product G1 G2 and the cross product G1 × 

G2. They are also known as the cartesian and the direct products, respectively. The edge sets are 

defined as follows.  

E (G1 □ G2) = {(u, x) (v, y) : (u = v and xy ∈ E (G2)) or (x = y and uv ∈ E (G1))}, E (G1 × 

G2) = {(u, x) (v, y) : uv ∈ E (G1) and xy ∈ E (G2)}.  

The following results concerning products are included in a note by Chen, Lih and 

Yan[10]  

EQUITABLE COLORING OF CORONA PRODUCT OF GRAPHS Kn, Cn AND 

Pn  

Let us look at the equitable colouring of various corona products G H of two graphs G 

and H in this chapter. Even if G is 4-regular and H is K2, determining the colorability of G H is 

NP-complete. The equitable chromatic number =(G H), where G is an equitably 4-colorable 

graph and H is a complete graph, a cycle, or a path, is then given specific values or upper 

bounds. This confirms the Equitable Coloring Conjecture for corona products of these graph 

classes.  
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Meyer [48] popularised the concept of fair colorability. However, Hajnal and Szemer'edi 

[25] already shown that a graph G of degree is equitably k-colorable if k(G) + 1. For such 

colouring, Mydlarz and Szemeredi'edi [49] discovered a polynomial-time method. Kierstead and 

Kos tochka [39] have provided a brief demonstration of this bound as well as another 

polynomial-time method. Meyer [48] proposed the following hypothesis in 1973: 

Equitable Coloring Conjecture (ECC) is Conjecture 3.2.1. Other than a full graph or an 

odd cycle, for every linked graph G, =(G) (G). 

For any graphs with six or fewer vertices, this hypothesis has been confirmed. The 

Equitable Coloring Conjecture is true for all bipartite graphs, according to Lih and Wu [44]. 

Wang and Zhang [55] studied r-partite graphs, which are a wider class of graphs. Meyer's 

conjecture is valid for entire graphs from this class, they demonstrated. For outerplanar graphs 

[60] and planar graphs with a maximum degree of at least 13 [58], the hypothesis was also 

verified. 

A simple reduction from graph colouring to equitable colouring may be shown by adding 

a sufficient number of isolated vertices to a graph, demonstrating that testing if a graph has an 

equitable colouring with a given number of colours is NP-complete (greater than two). For trees 

(previously known thanks to Chen and Lih [8]) and outerplanar graphs, Bodlaender and Fomin 

[2] demonstrated that equitable colouring may be solved to optimality in polynomial time. For 

equitable colouring of split graphs, a polynomial time method is also known [6]. 

The graph G H created from one copy of G and |V (G)| copies of H, where the ith vertex 

of G is next to every vertex in the ith copy of H, is called the corona of two graphs G and H. 

Frucht and Harary [17] were the first to offer such graph products in 1970. The corona Pn K1 is a 

comb graph, for example. Figure 3.1 shows another corona graph, namely L(K4)K2, where L(G) 

is a line graph of graph G. (b) The rest of this chapter is laid out as follows: Let's begin the 

following part with a theory on the difficulty of equitable corona colouring. Even for the corona 

of line graphs of cubic graphs (i.e. 3-regular) and K2, the issue turns out to be NP-hard. Corona 

products of graphs G with =(G) 4 and cycles are studied in Section 3.4. The corona products of 

the graphs G and routes are investigated in Section 3.5. Let us confirm the ECC conjecture by 
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establishing a new class of graphs that can be coloured optimally in polynomial time. Finally, in 

Section 3.6, we summarise our findings, which also applies to bipartite graphs. 

NP-COMPLETENESS PROOF  

FINAL REMARKS  

The chapter concludes with an NP-completeness proof for equitable colouring of corona 

graphs. For certain specific instances of such products, a poloynomial time solution for equitable 

colouring is also established. Of course, the difficulty of equitable 3- or 4-coloring of graph G, 

which is usually NP-hard, affects the difficulty of equitable colouring of GH. However, the 

following graphs: broken spoke wheels, reels, and certain graph products, as well as the 

associated coronas, allow equitable 3-coloring in polynomial time [19, 20, 46]. In addition, the 

Equitable Coloring Conjecture has been verified for these graphs. The following is a summary of 

our findings. Table 3.1.  

 

Finaly, note that some of our methods can be extended to equitable coloring of other 

classes of graphs. For example the algorithm given in the proof of Theorem 3.4.1 is also good for 

coloring bipartite graphs.  

Theorem 3.6.1. Let G be an equitably 3-colorable graph on n ≥ 2 vertices and let H be a 

bipartite graph. If 3|n then χ=(G ◦ H) ≤ 3. Moreover, if H has at least one edge then χ=(G ◦ H) = 

3.  
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Proof. Let us color the graph G equitably with 3 colors. After that let us the order 

vertices of G: v1, v2, . . . , vn in such a way that vertex viis colored with color i mod 3 and, as 

previously, use color 3 instead of color 0.  

Let us assume that our bipartite graphs H = H(V1, V2). Coloring the ith, i = 1, . . . , n, 

copy of bipartite graph H using |V1(H)| times color ((i mod 3) + 1) mod 3 and |V2(H)| times color 

((i mod 3) + 2) mod 3.  

In the coloring each of three colors is used exactly 1 + |V1(H)| + |V2(H)| times. This means that 

our coloring is equitable. 

 

 

EQUITABLE COLORING OF CENTRAL GRAPH AND TOTAL GRAPH OF 

SOME FAMILIES OF GRAPHS  

In this chapter, interesting results regarding the equitable chromatic num ber χ= for the 

central graph of star graph C (K1,n), the central graph of complete bigraph C (Kn,n), the central 

graph of complete graph C (Kn), the central graph of cycle C (Cn), the central graph of path C 

(Pn), the total graph of complete bigraph T (Km,n), the total graph of path T (Pn) and the total 

graph of cycle T (Cn).  

4.1 EQUITABLE COLORING OF CENTRAL GRAPH OF K1,n, Kn,n, Kn, Cn AND 

Pn  

Theorem 4.1.1. The equitable chromatic number of central graph of star graph, χ= (C 

(K1,n)) = n.  

Proof. Let V (K1,n) = {v, v1, v2, . . . , vn} where vvi = ei (1 ≤ i ≤ n) by the definition of 

Central graph C (K1, n) has the vertex set V (K1,n) ∪ {ui: 1 ≤ i ≤ n} where ui is the vertex of 
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subdivision of the edge ei. Also the vertex subset {v1, v2, . . . vn} of K1,n induces a clique on n 

vertices.  

 

Figure 4.1: Central graph of Star graph C (K1,n).  

Now partition the vertex set V (C (K1,n)) as follows.  

V1 = {v, v1}  

V2 = {u1, v2, un}  

Vi = {vi, ui−1 : 3 ≤ i ≤ n} .  

Clearly V1, V2 and Vi (3 ≤ i ≤ n) are independent sets of C (K1,n). Also, |V1| = |Vi| = 2 (3 ≤ 

i ≤ n) and |V2| = 3. It holds the inequality ||Vi| − |Vj|| ≤ 1 for i 6= j. To prove: χ= (C (K1,n)) ≤ n. 

Assume that χ= (C (K1,n)) < n, Since C (K1,n) contains a clique of order n, χ (C (K1,n)) ≥ n and so 

χ= (C (K1,n)) ≥ n. This contradiction shows that χ= (C (K1,n)) ≥ n. Hence χ= (C (K1,n)) = n.  

EQUITABLE COLORING OF TOTAL GRAPH OF Km,n, Pn AND Cn  

Theorem 4.2.1. If m ≤ n, the equitable chromatic number of total graph of com plete 

bigraphs,  
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Proof. Let (X, Y ) be the bipartition of Km,n where X = {vi: 1 ≤ i ≤ m}, and Y =  v′
j: 1 ≤ j ≤ n

 . Let uij 

(1 ≤ i ≤ m, 1 ≤ j ≤ n) are the edges of viv
′
j. By the defini tion of total graph T (Km,n) has the vertex 

set {vi: 1 ≤ i ≤ m}∪
 v′

j: 1 ≤ j ≤ n
 ∪ {uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and the vertices {uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} 

induce n disjoint cliques of order n in T (Km,n). Also vi (1 ≤ i ≤ m) is adjacent to v′
j(1 ≤ j ≤ n).  

Case 1: m = n,  

Now partition the vertex set V (T(Km,n)) as follows,  

V1 = {u11, u2n, u3(n−1), u4(n−2), ...., u(n−1)3, un2}  

V2 = {u12, u21, u3n, u4(n−1), ...., u(n−1)4, un3}  

. . . . . . . . . . . . . . .  

Vn = {u1n, u2(n−1), u3(n−2), u4(n−3), ...., u(n−1)3, un1}  

Vn+1 = {v1, v2, . . . , vn}  

Vn+2 = {v′
1, v

′
2, ...., v

′
n}.  

Clearly V1, V2, . . . , Vn+2 are independent sets and |Vi| = n (1 ≤ i ≤ n + 2) sat isfying the 

condition ||Vi| − |Vj|| = 0, for any i 6= j, χ= (T (Km,n)) ≤ n + 2. Since there exist a clique of order n 

+ 1 in T (Km,n). χ (T(Km,n) ≥ n + 1. Also each vi of T (Km,n) receives one color different from the 

color class assigned to the clique induced by {uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. By the definition of total 

graph each viis adjacent with v′
j(1 ≤ j ≤ n). Therefore {v1, v2, . . . , vm} and {v′

1, v
′
2, . . . , v

′
n} are 

independent sets and hence χ (T (Km,n)) ≥ n + 2. That is χ= (T (Km,n)) ≥ χ (T (Km,n)) ≥ n + 2, 

therefore χ= (T (Km,n)) ≥ n + 2. Hence χ= (T (Km,n)) = n + 2.  

Case 2: If m < n  
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Now we partition the vertex set V (T (Km,n)) as follows,  

V1 = {u11, u22, u33, u44, . . . , umm} ∪ {v′
n}  

V2 =
 u12, u23, u34, . . . , um(m−1)

 ∪ {um1} ∪ {v′
1}  

V3 =
 u13, u24, u35, . . . , um(m−2)

 
∪

 u(m−1)3, um2
 ∪ {v′

2}  

. . . . . . . . . . . .  

. . . . . . . . . . . .  

Vn−1 =
 u1(n−1), u2n} ∪ {u31, u32, . . . , um(m−2)

 
∪

 v′
n−2   

Vn = {u1n} ∪ 
 u21, u32, . . . , um(m−1)

 
∪

 v′
n−1   

Vn+1 = {v1, v2, v3, . . . , vm} .  

Clearly V1, V2, . . . , Vn+1 are independent sets of T (Km,n). Also |V1| = |V2| = . . . = |Vn| = 

m + 1 and |Vn+1| = m satisfy the condition ||Vi| − |Vj|| ≤ 1, for any i 6= j, χ= (T (Km,n)) ≤ n + 1. 

Since there exist a clique of order n + 1 in T (Km,n). χ (T (Km,n)) ≥ n + 1, that is χ= (T (Km,n)) ≥ χ 

(T (Km,n)) ≥ n + 1,  

therefore χ= (T (Km,n)) ≥ n + 1. Hence χ= (T (Km,n)) = n + 1.  

Theorem 4.2.2. The equitable chromatic number of total graph of path, χ= (T (Pn)) = 3.  

Proof. Since T (Pn) contains at least one cycle of length 3, we conclude that χ= (T (Pn)) ≥ 

3. Let V (Pn) = {v1, v2, . . . , vn} and let V (T (Pn)) = {vi: 1 ≤ i ≤ n}∪{ui: 1 ≤ i ≤ n − 1}. Where 

uiis the vertex of T (Pn) corresponding to edge vivi+1 of Pn. 
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Figure 4.4: Total graph of Path T (Pn).  

Case 1: n ≡ 0 mod 3  

Consider the following independent sets of T (Pn).  

V1 = {vi: i ≡ 1 mod 3, 1 ≤ i ≤ n − 2} ∪ {uj: j ≡ 2 mod 3, 2 ≤ j ≤ n − 1} 

 V2 = {vi: i ≡ 2 mod 3, 2 ≤ i ≤ n − 1} ∪ {uj: j ≡ 0 mod 3, 3 ≤ j ≤ n − 3}  

V3 = {vi: i ≡ 3 mod 3, 3 ≤ i ≤ n} ∪ {uj: j ≡ 1 mod 3, 1 ≤ j ≤ n − 2}  

 

Case 2: n ≡ 1 mod 3  

Consider the following independent sets,  

V1 = {vi: i ≡ 1 mod 3, 1 ≤ i ≤ n} ∪ {uj: j ≡ 2 mod 3, 2 ≤ j ≤ n − 2}  

V2 = {vi: i ≡ 2 mod 3, 2 ≤ i ≤ n − 2} ∪ {uj: j ≡ 0 mod 3, 3 ≤ j ≤ n − 1}  
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V3 = {vi: i ≡ 0 mod 3, 3 ≤ i ≤ n − 1} ∪ {uj: j ≡ 1 mod 3, 1 ≤ j ≤ n − 3}  

Case 3: n ≡ 2 mod 3,  

Consider the following independent sets,  

V1 = {vi: i ≡ 1 mod 3, 1 ≤ i ≤ n − 1} ∪ {uj: j ≡ 2 mod 3, 2 ≤ j ≤ n − 3}  

V2 = {vi: i ≡ 2 mod 3, 2 ≤ i ≤ n} ∪ {uj: j ≡ 0 mod 3, 3 ≤ j ≤ n − 2}  

V3 = {vi: i ≡ 0 mod 3, 3 ≤ i ≤ n − 2} ∪ {uj: j ≡ 1 mod 3, 1 ≤ j ≤ n − 1}  

Clearly the above said partition satisfies the condition, ||Vi| − |Vj|| ≤ 1 for  

i ≠ j . Therefore χ= (T ((Pn)) = 3.  

Conclusion: 

Graph theory was discovered by the realm of theoretical research for its own purposes. 

The points represent molecules in Uhlenbeck's statistical mechanics investigation, and two 

neighbouring points suggest nearest neighbour interaction of some type (for example the 

magnetic attraction or repulsion). Another application of graph theory in physics is as a visual 

aid. The figure proposed by Feynmann has points representing physical particles and lines 

representing particle pathways after collisions.Planarity has profound chemical ramifications in 

19th century chemistry, where lettered vertices signify individual atoms and connecting lines 

denote chemical bonds (with degree corresponding to valence). The 19th century Englishman 

James Sylvester, one of numerous mathematicians interested in counting certain sorts of 

diagrams representing molecules, is credited with the first usage of the term graph theory in this 

context. When pottery samples are supplied at an archaeological dig, we want to know what 
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styles were utilised when, so we create interval graphs. Assume that each type was used for a 

specific period of time, and that two styles found in the same grave were employed at the same 

time. Then, if possible, its interval representation is the possible time lines 
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