Proper coloring of Octopus graph, Cubic graph Barbell graph and Drum graph

\author{

1. G.Raja, Mphil scholar, Bharath Institute of Higher education and research, Selaiyur, Chennai-73
}
2.N.Ramya, Associate professor, Bharath Institute of Higher education and research, Selaiyur, Chennai-73

Abstract

:

The notion of proper coloring of graphs are discussed below. We give the exact value of chromatic number for, Octopus graph, Barbell graph, Cubic graph and Drum graph are discussed.

Introduction

Graph theory is an old subject with many modern applications. Its basic ideas were introduced in the eighteenth century by the great Swiss mathematician Leonhard Euler. In the last three decades graph theory has established itself a worthwhile mathematical discipline and there are many applications of graph theory to a wide variety of subjects such as operation research, physics etc. [5]

Preliminaries

Definition 1

A simple graph G is called a regular graph if each vertex of G has an equal degree.
A regular graph G is called a cubic graph if all the vertices of G are of degree 3.[2]

Definition 2

The Drums graph $D_{n}, n \geq 3$ can be constructed by two cycle graphs $2 C_{n}, n \geq 3$ joining two path graphs $2 \mathrm{P}_{\mathrm{n}}, \mathrm{n} \geq 2$ with sharing a common vertex. i.e., $\mathrm{D}_{\mathrm{n}}=2 \mathrm{C}_{\mathrm{n}}+2 \mathrm{P}_{\mathrm{n}}$.[3]

Definition 3

An Octopus graph $\mathrm{O}_{\mathrm{n}}, \mathrm{n} \geq 2$ can be constructed by a Fan graph $\mathrm{F}_{\mathrm{n}}, \mathrm{n} \geq 2$ joining a star graph $\mathrm{K}_{1, \mathrm{n}}$ with sharing a common vertex, where n is any positive integer. i.e., $O_{n}=F_{n}+K_{1, n}$.[4]

Main results

Theorem 1:

An octopus graph $\mathrm{O}_{\mathrm{n}}(\mathrm{n} \geq 2)$ holds proper coloring and whose chromatic number is 3 [4].

Proof:

Let G be an octopus graph O_{n}.

Let $\left\{u_{1} u_{2} \ldots u_{2 n+1}\right\}$ be the vertices of O_{n}.
u_{1} be the central vertex of O_{n}.
$u_{1+i},($ where $i=1,2, \ldots n)$ are uppermost vertices.
$\mathrm{u}_{\mathrm{n}+\mathrm{j}}($ where $\mathrm{j}=1,2, \ldots \mathrm{n})$ are the pendant vertices.
Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3\}$ is defined as follows,
(i) $\mathrm{f}\left(\mathrm{u}_{1}\right)=3$
(ii) $\mathrm{f}\left(\mathrm{u}_{1+\mathrm{i}}\right)=1$, when $\mathrm{i}=1,3,5, \ldots \mathrm{n}-1$
(iii) $\mathrm{f}\left(\mathrm{u}_{1+\mathrm{i}}\right)=1$, when $\mathrm{i}=1,3,5, \ldots \mathrm{n}-1$
(iv) $f\left(u_{n+j}\right)=1$ for all j
where ' n ' represents number of upper vertices in the Fan graph.

Illustration:

Figure 1: (a) Octobus graph O_{2} (b) Octobus graph O_{3}

Theorem 2:

A path union of two copies of cubic graph establishes proper coloring, and chromatic number is 2 [2].

Proof:

Let $G=(V, E)$ be a cubic graph.

Let $V(G)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}\right\}$
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq 5, \mathrm{u}_{1} \mathrm{u}_{6}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq 5, \mathrm{v}_{1} \mathrm{v}_{6}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq 6\right\}$

Gp be the path union of two copies of cubic graph of G and G^{\prime} respectively.

Define the coloring $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3\}$ is classified in to three cases.

In the cubic graph $u_{1}, u_{2} \ldots u_{n}$ be the inner vertices and $v_{1} v_{2} \ldots v_{n}$ be the outer vertices of G.

Similarly $u_{1}{ }^{\prime} u_{2}{ }^{\prime} \ldots u_{n}{ }^{\prime}$ be the inner vertices of G^{\prime} and $v_{1}{ }^{\prime} v_{2}{ }^{\prime} \ldots v_{n}{ }^{\prime}$ be the outer vertices of G^{\prime}.

Case (i): When the vertices (inner or outer) vertices of any cycle, $n=3,6,9 \ldots 3 \mathrm{k}$ (where $\mathrm{k}=1,2 \ldots$) coloring has to be given for G is
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1$, when $\mathrm{i}=1,4,7 \ldots \mathrm{k}-2$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2$, when $\mathrm{i}=2,5,8 \ldots \mathrm{k}-1$
(iii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3$, when $\mathrm{i}=3,6,9 \ldots \mathrm{k}$
(iv) $f\left(v_{i}\right)=1$, when $i=3,6,9 \ldots k$
(v) $f\left(v_{i}\right)=2$, when $i=1,4,7 \ldots k-2$
(vi) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3$, when $\mathrm{i}=2,5,8 \ldots \mathrm{k}-1$

Similarly coloring of G^{\prime} has to be
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=1$, when $\mathrm{i}=3,6,9 \ldots \mathrm{k}$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=2$, when $\mathrm{i}=1,4,7 \ldots \mathrm{k}-2$
(iii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=3$, when $\mathrm{i}=2,5,8 \ldots \mathrm{k}-1$
(iv) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=1$, when $\mathrm{i}=2,5,8 \ldots \mathrm{k}-1$
(v) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=2$, when $\mathrm{i}=3,6,9 \ldots \mathrm{k}$
(vi) $f\left(v_{i}{ }^{\prime}\right)=3$, when $\mathrm{i}=4,7,10 \ldots \mathrm{k}-2$

Illustration 1:

Figure 2: Path union of two copies of cubic graph with 12 vertices

Illustration 2:

Figure 3: Path union of two copies of cubic graph with 24 vertices

Case (ii): When the vertices (inner or outer) of any cycle, $n=1,4,7 \ldots 3 \mathrm{k}-2$ (where $\mathrm{k}=1,2 \ldots$) coloring has to be given for G is
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1$, when $\mathrm{i}=1,4,7 \ldots 3 \mathrm{j}-2(\mathrm{j}=1,2, \ldots)$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2$, when $\mathrm{i}=2,5,8 \ldots 3 \mathrm{j}-1(\mathrm{j}=1,2, \ldots)$
(iii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3$, when $\mathrm{i}=3,6,9 \ldots 3 \mathrm{j}(\mathrm{j}=1,2, \ldots)$
(iv) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2$, when $\mathrm{i}=\mathrm{n}-1$
(v) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=1$, when $\mathrm{i}=3,6,9 \ldots 3 \mathrm{j}(\mathrm{j}=1,2, \ldots)$
(vi) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2$, when $\mathrm{i}=1,4,7 \ldots 3 \mathrm{j}-2(\mathrm{j}=1,2, \ldots)$
(vii) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3$, when $\mathrm{i}=2,5,8 \ldots 3 \mathrm{j}-1(\mathrm{j}=1,2, \ldots)$
(viii) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3$, when $\mathrm{i}=\mathrm{n}$

Similarly coloring of G^{\prime} has to be
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=3$, when $\mathrm{i}=3,6, \ldots 3 \mathrm{j}(\mathrm{j}=1,2, \ldots)$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=1$, when $\mathrm{i}=1,4,7 \ldots 3 \mathrm{j}-2(\mathrm{j}=1,2, \ldots)$
(iii) $f\left(u_{i}{ }^{\prime}\right)=2$, when $\mathrm{i}=2,5,8 \ldots 3 \mathrm{j}-1(\mathrm{j}=1,2, \ldots)$
(iv) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=2$, when $\mathrm{i}=\mathrm{n}$
(v) $f\left(v_{i}^{\prime}\right)=2$, when $\mathrm{i}=1,4,7 \ldots 3 \mathrm{j}-2$
(vi) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=3$, when $\mathrm{i}=2,5,8 \ldots 3 \mathrm{j}-1$
(vii) $f\left(v_{i}{ }^{\prime}\right)=1$, when $\mathrm{i}=3,6,9 \ldots 3 \mathrm{j}$
(viii) $f\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=3$, when $\mathrm{i}=\mathrm{n}$

Illustration 1:

Figure 4: Path union of two copies of cubic graph with 16 vertices

Illustration 2:

Figure 5: Path union of two copies of cubic graph with 28 vertices

Case (iii): When the vertices (inner or outer) of any cycle, $\mathrm{n}=2,5,8 \ldots 3 \mathrm{k}-1$ (where $\mathrm{k}=1,2 \ldots$) coloring has to be given for G is
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1$, for $\mathrm{i}=1,4,7 \ldots 3 \mathrm{j}-2(\mathrm{j}=1,2, \ldots)$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2$, for $\mathrm{i}=2,5,8 \ldots 3 \mathrm{j}-1(\mathrm{j}=1,2, \ldots)$
(iii) $f\left(u_{i}\right)=3$, for $\mathrm{i}=3,6,9 \ldots 3 \mathrm{j}(\mathrm{j}=1,2, \ldots)$
(iv) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=1$, for $\mathrm{i}=\mathrm{n}-1$
(v) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2$, for $\mathrm{i}=\mathrm{n}$
(vi) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=1$, for $\mathrm{i}=3,6,9 \ldots 3 \mathrm{j}(\mathrm{j}=1,2, \ldots)$
(vii) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2$, for $\mathrm{i}=1,4,7 \ldots 3 \mathrm{j}-2(\mathrm{j}=1,2, \ldots)$
(viii) $f\left(v_{i}\right)=3$, for $i=2,5,8 \ldots 3 j-1(j=1,2, \ldots)$
(ix) $f\left(v_{i}\right)=2$, for $\mathrm{i}=\mathrm{n}-1$
(x) $f\left(v_{i}\right)=3$, for $i=n$

Coloring of G^{\prime} has to be given as,
(i) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=2$, for $\mathrm{i}=1,4,7 \ldots 3 \mathrm{j}-2(\mathrm{j}=1,2, \ldots)$
(ii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=3$, for $\mathrm{i}=2,5,8 \ldots 3 \mathrm{j}-1(\mathrm{j}=1,2, \ldots)$
(iii) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=1$, for $\mathrm{i}=3,6,9 \ldots 3 \mathrm{j}(\mathrm{j}=1,2, \ldots)$
(iv) $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=2$, for $\mathrm{i}=\mathrm{n}-1$
(v) $f\left(u_{i}{ }^{\prime}\right)=3$, for $\mathrm{i}=\mathrm{n}$
(vi) $f\left(v_{i}{ }^{\prime}\right)=1$, for $\mathrm{i}=2,5,8 \ldots 3 \mathrm{j}-1(\mathrm{j}=1,2, \ldots)$
(vii) $f\left(v_{i}^{\prime}\right)=2$, for $\mathrm{i}=3,6,9 \ldots 3 \mathrm{j}(\mathrm{j}=1,2, \ldots)$
(viii) $f\left(v_{i}^{\prime}\right)=3$, for $\mathrm{i}=1,4,7 \ldots 3 \mathrm{j}-2(\mathrm{j}=1,2, \ldots)$
(ix) $\mathrm{f}\left(\mathrm{vi}_{\mathrm{i}}{ }^{\prime}\right)=1$, for $\mathrm{i}=\mathrm{n}$
(x) $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=3$, for $\mathrm{i}=\mathrm{n}-1$

Illustration:

Figure 6: Path union of two copies of cubic graph with 20 vertices

Theorem 3:

A barbell graph $\mathrm{B}(\mathrm{m}, \mathrm{n})$ which holds proper coloring and whose chromatic number is n , where n represents number of vertices of a complete graph [1]

Proof:

Let $B(m, n)$ be the Barbell graph, and let $c_{11}, c_{12}, c_{13} \ldots c_{1 n}$ be the set of vertices of the first cycle.
$\mathrm{c}_{21}, \mathrm{c}_{22}, \mathrm{c}_{23} \ldots \mathrm{c}_{2 \mathrm{n}}$ be the set of vertices of the second cycle.
$c_{31}, c_{32}, c_{33} \ldots c_{3 n}$ be the set of vertices of the third cycle.
In general $\mathrm{c}_{\mathrm{m} 1}, \mathrm{c}_{\mathrm{m} 2} \ldots \mathrm{c}_{\mathrm{mn}}$ be the set of vertices of the $\mathrm{m}^{\text {th }}$ cycle.

Coloring has to be given, $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots \mathrm{n}\}$ is defined as follows
(i) $\mathrm{f}\left(\mathrm{c}_{\mathrm{m} 1}\right)=1$
(ii) $\mathrm{f}\left(\mathrm{c}_{\mathrm{m} 2}\right)=2$
(iii) $f\left(\mathrm{c}_{\mathrm{m} 3}\right)=3$
(iv) $f\left(\mathrm{c}_{\mathrm{m} 4}\right)=4$

Research Paper

(v) $f\left(c_{m 5}\right)=5$
(vi) $f\left(\mathrm{c}_{\mathrm{mn}}\right)=\mathrm{n}$

Illustration 1:

Figure 7: Barbell B(4, 3) - graph

Illustration 2:

Illustration 3:

Figure 9: Barbell B(3, 5) - graph

Illustration 4:

Figure 10: Barbell B(3, 6) - graph

Theorem 4:

Drum graph $D_{n}(n \geq 3)$ acknowledges the proper coloring and its chromatic number is 3 where n is any positive integer [4].

Proof:

Let $u_{1} u_{2} \ldots u_{n}$ be the upper vertices of the drum graph and $v_{1} v_{2} \ldots v_{n}$ be the lower most vertices of the drum graph and let $\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}$ be the path vertices on this graph and u be the common vertex.

Let the coloring $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3\}$, as defined as follows,
First drum graph D_{3} can be colored as,
(i) $\mathrm{f}(\mathrm{u})=1$
(ii) $\mathrm{f}\left(\mathrm{u}_{1}\right)=2$
(iii) $\mathrm{f}\left(\mathrm{u}_{2}\right)=3$
(iv) $\mathrm{f}\left(\mathrm{v}_{1}\right)=2$
(v) $f\left(v_{2}\right)=3$
(vi) $\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3$, for $\mathrm{i}=1,3 \ldots \mathrm{n}-1$
(vii) $f\left(w_{i}\right)=2$, for $\mathrm{i}=2,4 \ldots \mathrm{n}$

Illustration:

Figure 11: Drum graph D_{3}
Drum graph D_{4} can be colored as,
(i) $\mathrm{f}(\mathrm{u})=1$
(ii) $\mathrm{f}\left(\mathrm{u}_{1}\right)=2=\mathrm{f}\left(\mathrm{u}_{3}\right)$
(iii) $\mathrm{f}\left(\mathrm{u}_{2}\right)=3$
(iv) $\mathrm{f}\left(\mathrm{v}_{1}\right)=2=\mathrm{f}\left(\mathrm{v}_{3}\right)$
(v) $f\left(v_{2}\right)=3$
(vi) $\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3$, for $\mathrm{i}=1,3 \ldots \mathrm{n}-1$
(vii) $f\left(w_{i}\right)=2$, for $\mathrm{i}=2,4 \ldots \mathrm{n}$

Illustration:

Figure 12: ${ }^{\text {D }}$ Drum graph D_{4}
Similarly drum graph D_{5} can be colored as,
(i) $\mathrm{f}(\mathrm{u})=1$
(ii) $\mathrm{f}\left(\mathrm{u}_{1}\right)=2=\mathrm{f}\left(\mathrm{u}_{3}\right)$
(iii) $\mathrm{f}\left(\mathrm{u}_{2}\right)=3=\mathrm{f}\left(\mathrm{u}_{4}\right)$
(iv) $\mathrm{f}\left(\mathrm{v}_{1}\right)=2=\mathrm{f}\left(\mathrm{v}_{3}\right)$
(v) $\mathrm{f}\left(\mathrm{v}_{2}\right)=3=\mathrm{f}\left(\mathrm{v}_{4}\right)$
(vi) $\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3$, for $\mathrm{i}=1,3 \ldots \mathrm{n}-1$
(vii) $f\left(w_{i}\right)=2$, for $\mathrm{i}=2,4 \ldots \mathrm{n}$

Illustration:

Figure 13: Drum graph D_{5}

Conclusion:

Thus we find the proper coloring of the above mentioned graphs. It is of interest to study, some graph labeling such as prime cordial labeling, prime harmonious labeling, for the classes of graphs like Hamiltonian graphs, Eulerian graphs, Peterson graphs etc.,

References:

[1] Franklin Thamil Selvi, M.S. and Amutha, A., "A Performance on Harmonious Coloring of Barbell Graph", International Journal of Engineering and Advanced Technology (IJEAT), Vol. 9, Issue 1 (2019).
[2] Ganesan, V. and Balamurugan, K., "On prime labeling of cubic graph with 12 vertices", International Journal of Statistics and Applied Mathematics, Vol. 1, Issue 4 (2016)
[3] Edward Samuel, A. and Kalaivani, S., "Prime Labeling to Drums Graphs", Annals of Pure and Applied Mathematics, Vol. 16, No. 2, pp. 307-312 (2018).
[4] Edward Samuel, A. and Kalaivani, S., "Prime Labeling For Some Octopus Related Graphs", IOSR Journal of Mathematics (IOSR-JM), Vol. 12, Issue 6, pp. 57-64 (2016).
[5] Rosa, A, "On certain valuations of the vertices of graph", Theory of graphs, International Symposium, Rome, Gordan and Breach, Newyork and Dunod Paris, 2006.

