
e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 
Research Paper 

 

2524  

HIGHER ORDER DIFFERENTIAL OPERATORS ON GRAPHS 

KRISHNAMOORTHY. K 

Research Scholar 

M.Phil Mathematics 

Bharath Institute Of Higher Education And Research 

Mail Id : karthigame.89@gmail.com 

Guide Name: Dr. N. RAMYA 

Head of the Department, Department Of Mathematics 

Bharath Institute Of Higher Education And Research 

Address for Correspondence 

KRISHNAMOORTHY. K 

Research Scholar 

M.Phil Mathematics 

Bharath Institute Of Higher Education And Research 

Mail Id : karthigame.89@gmail.com 

Guide Name: Dr. N. RAMYA 

Head of the Department, Department Of Mathematics 

Bharath Institute Of Higher Education And Research 

 
Abstract 

In the recent decades, a new frontier has emerged with a similar goal, that is to con-trol the optical 

properties of materials. If we can engineer materials that prohibit or allow the propagation of light at 

certain frequencies, or localize it, our technology would benefit greatly. For instance, one envisions 

optical integrated circuits, which potentially can op- erate faster than our current semiconductor ones. 

The materials that could lead us to such goal are the so called photonic crystals.Sections B and C of 

contain an exposition and the proofs of our results concerning existence and confinement of guided 

waves in photonic crystal waveguides. Namely, we prove existence and confinement of guided waves 

through a linear defect in a PBG material, provided some ―strength‖ conditions on the defect. The 

results are obtained both for the scalar (corresponding to acoustic or 2D photonic guides) and the full 3D 

Maxwell cases. In the last couple of decades, engineers have been able to produce thin, graph-like 

structures (quantum wires, mesoscopic systems). The need to study propagation of waves in such 

structures has lead to the birth of quantumgraph theory. Quantum graphs also arise as simplified model in 

many areas of science. Besides quantum wires and mesoscopic system already mentioned, quantum 
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graphs also arise in modelling free-electron theory of conjugated molecules in chemistry, photonic 

crystals theory, scattering theory, quantum chaos and nanotechnology. 

INTRODUCTION 

Our current technology trend in electronics seems to gear towards faster and smaller equipment. 

With the miniaturization scale going towards nano-scale, the theory of quan- tum graphs is 

indispensable to our understanding and in making breakthrough in some areas of nanotechnology.In 

sections B and C of we describe and prove our results concerning spec- tral properties of quantum 

graphs.One of the results concerning quantum graphs that we establish, is validity of the lim- iting 

absorption principle and thus absence of singular continuous spectrum for scatteringgraphs. The limiting 

absorption principle is useful for understanding the spectrum of a quantum graph, which in turn gives us 

information about quantum dynamics on suchobjects. 

As in the case of photonic crystal, gaps in the spectrum are essential for quantum graph studies as 

well. A standard way to create spectral gaps is to make the medium pe- riodic. However, this neither 

guarantees existence of gaps (except in the one-dimensional case), nor allows easy control over the 

location of the gaps. We present a novel proceduresof opening spectral gaps in regular finite quantum 

graphs. This procedure also allows some control over the location of the gaps. 

SPECTRAL PROPERTIES OF PHOTONIC WAVE GUIDES* 

One could think of a photonic crystal as a block of a dielectric medium (e.g., GaAs) withholes within 

its structure arranged in a periodic manner. These holes are filled with adifferent dielectric material 

(e.g., air). Photonic crystals play the role of optical analogs of semiconductors. In a semiconductor, its 

atoms are arranged in a periodic lattice. This periodic structure prohibits electrons to have certain values 

of energies. These forbidden energy values form the so-called gaps in the energy spectrum of a 

semiconductor and theycorrespond to values in the spectral gaps of Schrödinger operator H  = −∆ + V 

(x) with a periodic potential V (x). Allowed energy values form the spectral bands. Thus, the energy 

spectrum of a semiconductor has a band-gap structure (see Fig. 1). Existence of theseenergy gaps is 

what makes semiconductors so useful. 
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Fig. 1. Spectral Band-Gap 

 
 

In the case of a photonic crystal, propagation of monochromatic electromagnetic waves (instead of 

electrons) through a block of dielectric material containing holes dis-tributed periodically and filled 

with air (or other dielectric material) is studied. See Fig. 2. 

 

 

Fig. 2. PBG Material 

 
Photonic crystals were first suggested in 1987, see [25, 62] . Analogously to the semiconductor 

case, frequency spectrum of a photonic crystal has a band-gap structure. Ifa frequency gap does indeed 

exist, waves with frequencies within the gap cannot exist inthe medium. Photonic crystals with gaps in 

their spectra need to be manufactured. 

Photonic crystals offer great promises in lasers, high-speed computers and in the area of 

telecommunications. Already, fiber-optic cables, which guide light, have revolutionized the 

telecommunications industry. Photonic crystals provide potentially better means of guiding and 

localizing light than current optical materials. There exist several books and surveys about both physics 
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and mathematics, as well as possible applications of photoniccrystals. See for example. 

A linear photonic band-gap (PBG) waveguide is a linear ―defect‖ introduced into 
 

photonic crystal that destroys its periodicity. This could change the spectrum in such a way that 

allows waves of certain frequencies, which were originally prohibited from existing in the ―defect-less‖ 

bulk, to propagate within the defect. This suggests that such linear defects can possibly be used as 

efficient optical waveguides. Below is a picture of amore general PBG waveguide (Fig. 3). 

 

 

 

Fig. 3. A PBG Waveguide 

Current fiber optic cables use total internal reflection to guide light. However, when the cable is 

bent past a certain critical angle, total internal reflection fails and significant amount of light escapes 

from the cable. A waveguide carved out of a photonic crystal does not use the law of total internal 

reflection. Light of frequencies prohibited in the bulk is confined to the waveguide due to the periodic 

arrangement of holes surrounding the waveguide. Hence light is still guided along bends in photonic 

waveguides. 

In order to study propagation of electromagnetic waves in photonic crystal, we must turn to Maxwell 

equations. In cgs units (centimeter, gram, second), they are 

 

1 ∂B 

∇·B = 0 ∇×E + 
c ∂t 

= 0 



e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 
Research Paper 

 

2528  

1 ∂D 4π 

∇·D = 4πρ ∇×H − 
c ∂t 

= 
c 

J 

 
where E and H are the electric and magnetic fields respectively, D and B are the dis- placement and 

magnetic induction fields respectively and ρ and J are the free charges andcurrents. The constant c is the 

speed of light. 

SPECTRAL PROPERTIES OF QUANTUM GRAPHS* 

 
A. Quantum Graphs - An Introduction 

 
 

We first start with defining what a graph is. A graph Γ consists of a set V (Γ) of points called vertices 

together with a set E(Γ) that consists of pairs of vertices. The elements of E(Γ) are called edges. We 

will also denote them as V  := V (Γ) and E  := E(Γ) if there isno ambiguity about which graphs we 

are referring to. 

Loops and multiple edges between vertices are allowed. If V and E are finite sets, we said Γ is a 

finite graph. If either V or E is (countably) infinite then Γ is an infinite graph. The degree dv of a vertex 

v is the number of edges incident to v. We will assume that dv is positive and finite. Due to positivity of 

dv, there are no isolated vertices. 

A metric graph is a graph Γ such that each edge e is assigned a positive length le ∈(0, ∞] and a 

coordinate xe along the edge. The subscript e will be dropped if there is no ambiguity. A metric graph 

is considered to be a one-dimensional variety. With thecoordinate system xe, the standard notions of 

analysis like metric, measure, integration, limit and differentiation along the edges can be employed. 

Function spaces such as L
2
(Γ), where the function belongs to L

2
(e) on each edge e in Γ can also be 

introduced. 

A quantum graph is a metric graph equipped with a self-adjoint differential operator. 
 

In defining a differential operator on graph, one needs to impose some ―boundary‖ condi- 

tions at the vertices. The simplest of such examples is the operator that acts as d2
 

— 

 

 
along 

2 
dx e 
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the edges on functions that are continuous and such that at each vertex v the sum of thederivatives 

along the edges emanating from v is zero. This vertex condition is commonly 

 

 
*Part of this chapter is reprinted with permission from On the limiting absortionprinciple and 

spectra of quantum graphs by B. S. Ong, Quantum Graphs and Their Ap- 

plications, Contemp. Math. 415 (2006). Ⓧc  2006 by AMS. 

 

 
known as Kirchhoff, Neumann, or zero flux condition. 

 
Quantum graphs naturally arise as simplified models in mathematics, physics, chem- istry, and 

engineering. There are systems that have some dimensions too small to be stud- ied using classical 

physics, while too large to be considered on the quantum level only. Such systems are called mesoscopic 

and may look like surfaces (quantum walls), wires (quantum wires) or dots (quantum dots). See [22] for 

more details. Some models of mesoscopic systems and nanotechnology involve quantum graph theory. 

The most important reason for considering quantum graphs is studying propagation of waves 

through media that resemble thin neighborhoods of graphs, such as circuits of quantum wires. 

Applications also include thin acoustic, quantum and optical waveguides.Quantum graphs model arising 

in photonic crystal theory were obtained and studied in [41, 42] . Further applications of quantum graphs 

can be found in [36] . 

 
1. More on Graphs and Metric Graphs 

 
 

Let Γ = (V, E) be a graph. If e = xy is an edge formed by joining two nonadjacent vertices x, y ∈Γ then 

we will denote by Γ+ e the graph (V, E 𝖴{e}). If e ∈E, then Γ−eis the graph (V, E \{e}). 

We will sometimes consider metric graphs Γ with infinite leads. An infinite lead is an edge of 

infinite length with one vertex. One can naturally identify such edge with the half-axis R+. Infinite 

leads are not edges described in E(Γ). Hence one can assume that each element of E(Γ) has finite 

length. We also make the following assumption: 

Assumption 1: The lengths of all edges e are uniformly bounded from below: 
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0 < c ≤le ≤∞, (3.1) 

 
 

where c is a positive constant. In the case of a finite graph, this is naturally true. 

 
Functions on a metric graph Γ are defined along the edges. A function is said to be 

 

 
continuous on Γ if it is continuous along all edges in Γ and at each vertex the function values from 

different edges insident to that vertex agree. As mentioned before, with the edges being identified with 

segments of the real line, one can define Lebesgue measure along the edges of Γ. Thus one can define in 

a natural way some function spaces on Γ. 

Definiton 1. 1. The space L
2
(Γ) on Γ consists of functions f that are measurable and square 

integrable on each edge e and satisfy 

 

ǁf ǁL22
(Γ)Σ2 

= ǁf ǁ  2 

L (e) 

e∈E 

 

< ∞. 

 

 

In other words, L
2
(Γ) is the orthogonal direct sum of spaces L

2
(e). 

 

2. The Sobolev space H
1
(Γ) consists of all continuous functions on Γ that belong to 

H
1
(e) for each edge e and satisfy 

 

ǁf ǁH12
(Γ)Σ2 

= ǁf ǁ   1 

H (e) 

e∈E 

< ∞. 

 

 

There is no natural way to define Sobolev spaces H
k
(Γ) of order k > 1. 
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2 

 

2. Operators on Graphs 

 
 

A quantum graph is a metric graph equipped with a self-adjoint differential operator. Someof the simplest 

operators frequently encountered in quantum graph theory act on the edges as the negative second 

derivative 

d
2
f 

f (x) →− (x) (3.2) 
dx 

 

or more general Schrödinger type operator 

 

 
df (x) →(i

dx + A(x))
2
f (x) + V (x)f (x). 

 
Here x denotes the coordinate xe along the edge e. Higher order differential and even pseudo-differential 

operators can arise as well. For the remainder of this chapter, we willonly be considering operator that 

acts as negative second derivative on each edge. 

Besides specifying the differential expression of the operator on the edges, we would also need to 

describe the operator’s domain, which involves prescribing some ―boundary‖ conditions at the vertices. 

We will only deal with local vertex conditions. In particular, we are interested in all local vertex conditions 

that lead to a self-adjoint realization of operatorwith differential expression such as (3.2). 

In considering local vertex conditions, it suffices to address the problem of self-adjointness at a 

single vertex v with degree dv. For functions in H
1
 on each edge, let F be the vector (f1(v), . . . , 

fd(v))
t
 of the vertex values of the function along each edge adjacent to v (so there are dv  edges) and F 

J = (f1
J (v), . . . , fd

J (v))
t
 is the vector of the 

derivatives at v taken along the edges in the outgoing directions from v. Then the most 

general form of such a (homogeneous) condition is 

AvF + BvF J  = 0 (3.3) 
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Here Av  and Bv  are dv  × dv  matrices.  The rank of dv ×2dv  augmented matrix [Av |Bv ] must equal to dv  in 

order to ensure the correct number of independent conditions. The following theorem from [28] gives 

necessary and sufficient conditions on the matrices Av and Bv that lead to the resulting operator being 

self-adjoint. We state the theorem without proof,which can be found in [28] . 

2. Proof of the Main Result 

 
 

The proof of Theorem 16 will use the Dirichlet-to-Neumann map to rewrite the spectral problem on Γ as 

a vector valued spectral problem on a half-line with a general Robin condition at the origin. 

First of all, Lemma 15 implies that it is sufficient to prove absence of singular continu- ous spectrum on 

the positive half-axis only. Then the statement about absolute continuousspectrum would follow as well 

by the same Lemma. 

Let R(λ) be the resolvent of H. The first statement of Theorem 16 is established inthe following 
 

Lemma 18. Let f be a compactly supported function on Γ which is smooth on each edge and satisfies the 

vertex conditions (3.3). Then for any interval [a, b] ⊂ R+ that does not intersect σ(H0) one has 

 

 

sup 
 

a ≤λ ≤b 

 
0 < ϵ < 1 

 

|(R(λ + iϵ)f, f )|< ∞. (3.14) 

 

 

In fact, the expression (R(λ)f, f ) can be analytically continued through such intervals 

 
[a, b]. 
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So, now our task is to prove Lemma 18. This will be done using the Dirichlet-to- Neumann 

operator to reduce the spectral problem for H on Γ to a vector one on the half- line. 

At this point it will be beneficial to have in mind a different geometric picture of Γ than in Fig. 5. 

Namely, imagine that all the n infinite rays ev, v ∈ B are stretched along the positive half-axis in parallel, 

being connected at the origin by the finite graph Γ0 attachedto the rays at the vertices of B (see Fig. 6). 

Any function u on Γ can now be viewed as the 

 

 

Fig. 6. A Different Visualization of Γ. 

 
 

pair  (u0,  u1),  where  uj     =  u|Γj  .  Functions  defined  on  the  part  Γ1   of  Γ  (in  particular,  u1)  can  be 

interpreted  as  vector-valued  functions  on  R+   with  values  in  Cn   (recall  that  n  =  |B |).  In  particular, 

interpreting u1  as such, we can write u|B   = u1 |B   = u(0), where 0 is the origin in R+. 

Let now f = (f0, f1) be as in Lemma 18. Then u = R(λ)f is a function that belongs 
 

 
2 

loc 

 
to H 

on each edge and satisfies vertex conditions (3.3) and the equation 

 
 

Hu −λu = f. (3.15) 
 

 

Here u naturally depends on λ. The quantity we need to estimate in (3.14) is now theinner product 

(u, f ) = (u0, f0) + (u1, f1). Let us write (3.15) and the vertex conditions 
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dx 

 

 

separately for u0 on Γ0 and u1 on Γ1. On the finite graph Γ0 we get 
 

 

 

d2 

(− 2 −λ)u0 = f0 

(3.16) 
 

(3.3) satisfied on vertices of Γ0  except those in Bu0 |B  = u1(0) 

Similarly, on Γ1 we have 

 

(− d2 —λ)u1  = f1  on R+
 

dx 

2 

 

(3.17) 

 

uJ
1(0) = Nu0 

 

Here N is the previously introduced ―normal derivative at B‖ operator on Γ0 and functions 

 

u1, f1 are interpreted as functions on R+ with values in Cn. 

 
Notice that the boundary conditions on B in (3.16) and at zero in (3.17) are just the vertex 

conditions (3.3) on B rewritten
2
. 

If now we are able to express Nu0 in terms of u1(0) and f0, we will essentially separate problems on 

Γ0 and Γ1. This can easily be done due to Lemma 17. Indeed, if R0(λ) is the resolvent of the operator H0 

studied in the previous section, then clearly one 

has 
 

 

 

 
and thus 

d2 

u0 = R0(λ)( 
dx2  + λ)E(u1(0)) + R0(λ)f0 (3.18) 

 
Nu0  = Λ(λ)u1(0) + NR0(λ)f0  = Λ(λ)u1(0) + g(λ). (3.19) 
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Here, for a given f0 of the considered class, g(λ) = NR0(λ)f0 is a known meromorphicvector 

function of λ in C with singularities only at points of σ(H0). 

 

 
2When we need to remember that uj (·) also depends on λ, we will write it as uj (·, λ). 

Now the problem (3.17) can be rewritten as 

 

(− d2 —λ)u1  = f1  on R+
 

dx 

2 

 

(3.20) 
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2 

√ 

 

u1
J  (0) = Λ(λ)u1(0) + g(λ). 

 
By the construction, Λ(λ) is a meromorphic matrix function in C with self-adjointvalues along 

the real axis. We also observe that the only memory of the finite part of the graph is confined to the 

vector-function g(λ). We also need to remember that u1 mustbelong to L
2
(R+, Cn). 

If we now show that both expressions (u1(·, λ), f1(·)) and u1(0, λ) continue analyti- 

 
cally through the real axis except a discrete set, then according to (3.18) the same will hold for  (u0(·, λ), 

f0(·)), and thus the Lemma and the main Theorem will be proven.  Hence, we only need to concentrate 

on the vector problem (3.20) on the positive half-axis. 

Let us consider the self-adjoint operator P in L
2
(R+) naturally corresponding to 

d2 

− with the Neumann condition at the origin. Let also r(λ) be its resolvent. We sketch 
dx 

below the proof of the following well known limiting absorption result: 

 
 

Lemma 19. For any smooth compactly supported function f on R+  and any interval (a, b) ⊂ R+, 

the inner product (r(λ)f, f ) as a function of λ can be analytically continued through (a, b) from the 

upper half-plane Im  λ > 0. 

√ 
 

Let us chose in the upper half-plane the branch of λ that has positive imaginary part. The above 

lemma then follows immediately from the explicit formula for r(λ): 

∫ ∞ 
√ √ 

  

(r(λ)fi)(x) =ei
 

λ(x+s) + ei λ|x−s| 
f (s) ds. (3.21) 

2   0 λ 
 

This formula also implies that the value (r(λ)f )(0) has the same analyticity property. 

In what follows we will abuse notations using r(λ) where in fact one should use 

r(λ) 
N 

I (here I is the unit n ×n matrix). 
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1 1 

√ 

1 1 1 1 1 

It is not hard to solve (3.17) now. Indeed, after a simple computation one arrives tothe formula for 

√ 
the solution that one can check directly when Im λ > 0: 

 

u (x, λ) := (r(λ)f )(x) −ie
i
√

λxA(λ) (3.22) 
 

 

where the vector A(λ) is: 

 
 

A(λ) = Λ(λ)[ 

 
√ 

λ + iΛ(λ)]
−1

 

 
 

 

 

 

 
(r(λ)f1)(0) 

+ 

 

 

g(λ) 

√  
 

λ 

 

 

 

 
(3.23) 

 

√ √ 
Notice that the matrix function λ + iΛ(λ) is meromorphic on the Riemann surface of λ. Due to 

self-adjointness of Λ(λ), the values of that function for non-zero real λ are invertible. Hence, the 

√ −1 
matrix function    λ + iΛ(λ)    is meromorphic on the sameRiemann surface. 

 
Now the quantity of interest becomes 

(u (·, λ), f  (·)) = (r(λ)f  , f  ) −i(e
i
√

λxA(λ), f  (x)). (3.24) Lemma 19 

√ 
implies the needed analyticity of the first term in the sum. Since Im λ > 

 

0, according to the remarks after (3.21), (r(λ)f1)(0) is analytic hence e
i
   λxA(λ) is analytic through (a, b) 

as well save for a discrete set of λ. Thus the final term in the sum can also be analytically continued 

through (a, b) as well outside of a discrete set of λ. 

This finishes the proof of Lemma 18. 

 
Since the space of functions f as above is dense in L

2
(Γ), it is well known that (3.14) implies 

absence of the singular continuous spectrum (e.g., Proposition 2 and (18) in Section 1.4.5 of [63] or pp. 

136-139 in Section XIII.6 of [53] ) and thus proves Theorem 16. 
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SUMMARY 

 
In this dissertation, we described our results concerning two areas of applied spectral the-ory. 

Photonic crystals offer great promises in lasers, high-speed computers and in the area of 

telecommunications. Already, fiber-optic cables, which guide light, have revolutionized the 

telecommunications industry. Photonic crystals provide potentially better means of guiding and 

localizing light than current optical materials. 

In the area of photonic crystal waveguides (PBG waveguides), we proved existence and 

confinement of guided waves through a linear defect in a PBG material, provided some ―strength‖ 

conditions on the defect. The results are obtained both for the scalar (corresponding to 2D photonic or 

any dimension acoustic guides) and the full 3D Maxwellcases. See [43, 44] . 

The most important reason for considering quantum graphs is studying propagationof waves 

through media that resemble thin neighborhoods of graphs, such as circuits ofquantum wires. 

Applications also include thin acoustic, quantum and optical waveguides.One of the results in quantum 

graphs that we have is establishing a limiting absorption principle and thus absence of singular 

continuous spectrum for scattering graphs. Thelimiting absorption principle is useful in understanding 

the spectrum of a quantum graph 

which in turn gives us information about quantum dynamics on such objects. See [49] . 

As we have seen in the case of photonic crystal, gaps in the spectrum are essential for guiding and 

localizing light. A standard way to create spectral gaps is to make the medium periodic. Unfortunately, 

this neither guarantees existence of gaps (except in the one-dimensional case), nor allows easy control 

over the location of the gaps. We present a novel procedures of opening spectral gaps in regular finite 

quantum graphs. This procedure also allows some control over the location of the gaps. See [45] . 

The work done in this dissertation clearly can and needs to be continued further. For instance, 

concerning photonic crystal waveguides, one would like to show that the spectraof Maxwell and Acoustic 

operators are absolutely continuous (i.e., that no bound states can arise). Propagation of guided waves in 

bent waveguides are very important in applicationand thus would be a natural choice for the next project. 

In quantum graph theory, the resonant gap opening procedure is very important for applications and 

thus the technique needs to be extended to any graph (finite or infinite). Also one needs to obtain weaker 

conditions on the scatters that ensure that gaps can be opened. 
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The results are published in one paper [44] , one more paper is accepted for publica-tion [49] , and 

two more are in preparation [43, 45] . 
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