Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 4, 2023

PHYTOPLANKTON DISTRIBUTION AND ABUNDANCE IN GODAVARI RIVER AT NIRMAL DISTRICT

S. Vinod Kumar and Prof. Nirmala Babu Rao.

Department of Botany, University College of Science, Osmania University, Hyderabad, Telangana, India.

ABSTRACT

Over the course of a year (July 2019 to June 2020), daily fluctuations in physico-chemical and nutritional properties were examined to determine the impact of the Godavari river on plankton during a monsoon-driven period. The results of this study indicate that nitrate availability may have a major impact on the physiology and community makeup of natural phytoplankton communities in this area. However, additional seasons with greater physicochemical diversity were used for this experiment. Therefore, more research is required. Due to extreme light deprivation brought on by high turbidity, despite the considerable amount of nutrients delivered by river discharge, it did not result in a phytoplankton bloom. Increased phytoplankton biomass and abundance were linked to water column stratification during a time of moderate discharge, indicating that water column stability is more crucial for promoting phytoplankton blooms than nutrients. According to the link between phytoplankton abundance and nutrients, high N:P ratios support algae growth whereas low N:P ratios favor phytoplankton growth. According to this study, nutrients altered the makeup of the phytoplankton.

Keywords: Phytoplankton diversity, Nutrients, Daily fluctuations.

INTRODUCTION

Water is the most crucial and fundamental resource for mankind. Water resource management has now become a major issue for all emerging countries (Kharake A, Pathare J, Deshmukh P (2021). A severe threat to the river system is posed by the recurrent activities that take place beside rivers and the rapid population growth in those areas. The state of the water, both quality and quantity are consistently under pressure from a variety of human activities, including the clearance of vegetation, industrial activity, encroachment, household, and religious activities.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 4, 2023

The water quality decreased as a result of all these actions. Most of these problems are seen in and around urban areas. This perspective has been taken into account in a thorough investigation of the Godavari River in Basara. The site was used to collect water samples in the first week of Sep 2019 of three sites, Site-I Basara village, Site-II Kowta village and Site-III Ashta village, Nirmal district where Godavari river runs.

Algae are Eukaryotic, primordial aquatic plants that have Chlorophyll as their major pigment for photosynthetic activity. Because of this ability to produce their own food through photosynthesis, algae are regarded as autotrophs. These provide food for a variety of tiny aquatic invertebrates, which in turn provide food for aquatic animals. The Godavari river region at Basara is key site and important natural resource. The wetlands of Godavari are bodies of fresh water. Godavari River is located in Basara Which is 2 km from Basara Bus Station and 1 km from Basara Temple. The Godavari river merges with the Manjeera river close to Basara, where the water flow increases. Before going to the main temple, many pilgrims bathe at the ghats. Samples gathered over the course of a year, from July 2019 to June 2020. Previous works by Chattopadyaya, C., et al., (2009); Chakraborty, S., et al., (2012); Ghosh, S., Barinova, S., & Keshri, J. P. (2012); Jain, S. K., et al., (2007) study on the phytoplanktons of Indian states is still much more to be discovered.

MATERIALS AND METHODS

COLLECTION, PRESERVATION AND IDENTIFICATION

The planktonic algal species were sampled from the Basara bathing ghat every month. The terrestrial members were collected with a knife early in the morning, whereas benthic algae were retrieved with forceps. For collection, between July 2019 to June 2020. Samples are stored in a 4% formaldehyde aqueous solution in the lab for research. The morphological examinations were carried out on fresh material using a light microscope, Fritsch (1961), Prescott (1962), Philipose (1967), Tiwari A, A Rana, and S V S Chauhan (2003), Misra, T. N et al., (1992), and Desikachary (1959) were used to identify the taxa. The Simpson Index is calculated as $D= \Sigma n(n-1)/N(N-1)$ and Simpson Reciprocal Index=1-D

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 4, 2023

RESULT AND DISCUSSION

Table 1: Phytoplankton species documentation in Site-I Basara village, Site-II Kowta village and Site-III Ashta village, Nirmal district, Godavari river.

S.No	Algal species	Class	Site-I	Site-II	Site-III
1	Chara glabra	Chlorophyceae	**	**	**
2	Chara vulgaris	Chlorophyceae	**	**	**
3	Chladophora glomerata	Chlorophyceae	**	**	*
4	Chlamydomonas gliobosa	Chlorophyceae	**	**	*
5	Chlorella ellipsoidea	Chlorophyceae	*	**	*
6	Chlorella vulgaris	Chlorophyceae	*	**	*
7	Closterium acerosum	Chlorophyceae	*	**	*
8	Clostrium tumidum	Chlorophyceae	*	-	*
9	Cosmarium auriculatum	Chlorophyceae	*	*	-
10	Cosmarium botrytis	Chlorophyceae	*	*	-
11	Euastrum spinulosum	Chlorophyceae	*	-	**
12	Euastrum verrucosum	Chlorophyceae	*	*	-
13	Euastrum quadriculatum	Chlorophyceae	*	*	-
14	Oedogonium grande	Chlorophyceae	**	**	*
15	Oedogonium patulum	Chlorophyceae	**	*	*
16	Pediastrum meyen	Chlorophyceae	**	**	*
17	Pediastum duplex	Chlorophyceae	-	-	**
18	Scenedesmus denticulatus	Chlorophyceae	*	*	*
19	Scenedesmus obiquus	Chlorophyceae	**	**	*
20	Scenedesmus quadricauda	Chlorophyceae	*	*	*
21	Spirogyra acanthospora	Chlorophyceae	*	**	*
22	Spirogyra discoidea	Chlorophyceae	**	*	**
23	Spirogyra varians	Chlorophyceae	**	*	**
24	Tetraedron quadratum	Chlorophyceae	*	*	*
25	Tetraedron regulare	Chlorophyceae	*	*	*

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 4, 2023

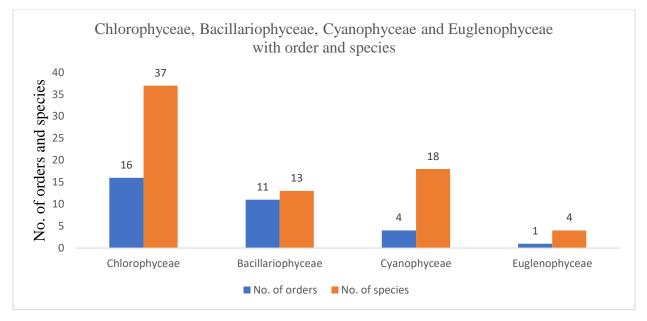
26	Zygnema pectinatum	Chlorophyceae	*	**	*
27	Closterium moniliferum	Chlorophyceae	**	**	**
28	Cosmarium granatum	Chlorophyceae	**	*	**
29	Pediastrum subgranulatum	Chlorophyceae	-	**	*
30	Scenedesmus dimorphus	Chlorophyceae	**	**	*
31	Scenedesmus major	Chlorophyceae	*	**	*
32	Scenedesmus oahuensis	Chlorophyceae	*	**	*
33	Oocystis gigas	Chlorophyceae	*	**	*
34	Cosmarium nymannianum	Chlorophyceae	*	-	*
35	Cosmarium puntatulum	Chlorophyceae	*	*	-
36	Pediastrum duplex	Chlorophyceae	*	*	-
37	Pediastrum simplex	Chlorophyceae	*	*	-
38	Cymbella cymbiformis	Bacillariophyceae	*	*	*
39	Cymbella parva	Bacillariophyceae	**	*	*
40	Gomphonema acuminatum	Bacillariophyceae	*	*	*
41	Gomphonema gracile	Bacillariophyceae	**	-	*
42	Navicula radiosa	Bacillariophyceae	**	*	**
43	Pinnularia gibba	Bacillariophyceae	*	*	*
44	Navicula cryptocephala	Bacillariophyceae	*	*	*
45	Navicula transitans	Bacillariophyceae	**	*	*
46	Pinnularia viridis	Bacillariophyceae	*	*	*
47	Cymbella tumida	Bacillariophyceae	**	-	*
48	Gomphonema intricate	Bacillariophyceae	**	*	**
49	Navicula amphirynchus	Bacillariophyceae	*	*	*
50	Navicula lanceolata	Bacillariophyceae	*	*	*
51	Anabaena Constricta	Cyanophyceae	**	**	*
52	Anabaenopsis sp.	Cyanophyceae	*	**	*
53	Chroococcus minutus	Cyanophyceae	*	*	*
54	Gloeocapsa atrata	Cyanophyceae	*	**	*
55	Gloeotrichia natans	Cyanophyceae	*	**	-

56	Hydrococcus sps.	Cyanophyceae	*	*	*
57	Lyngbya ceylanica	Cyanophyceae	*	*	*
58	Nostoc sphaerium	Cyanophyceae	**	*	**
59	Oscillatoria Formosa	Cyanophyceae	*	**	*
60	Oscillatoria rubescens	Cyanophyceae	*	-	*
61	Oscillatoria tenuis	Cyanophyceae	*	**	*
62	Phormidium luridum	Cyanophyceae	*	**	*
63	Phormidium molle	Cyanophyceae	*	**	-
64	Spirulina major	Cyanophyceae	*	-	-
65	Synechocystis aqualis	Cyanophyceae	**	*	*
66	Osillataria farmosa	Cyanophyceae	*	**	-
67	Oscillatoria limosa	Cyanophyceae	*	*	*
68	Gleotrichia rasiborskii	Cyanophyceae	*	**	-
69	Euglena caudata	Euglenophyceae	*	*	-
70	Phacus longicaudata	Euglenophyceae	*	**	-
71	Trachelomonas hispida	Euglenophyceae	*	*	*
72	Phacus acuminatus	Euglenophyceae	*	**	-

*Present, ** Abundance, - Absent

Site-I Basara village, Site-II Kowta village and Site-III Ashta village, Nirmal district

Table 2: Species percentage composition, Site-I Basara village, Site-II Kowta village and Site-III Ashta village, Nirmal district, Godavari river.


Class	No. of orders	No. of species	Percentage
Chlorophyceae	16	37	51.38
Bacillariophyceae	11	13	18.07
Cyanophyceae	4	18	25.00
Euglenophyceae	1	4	05.55
Total	32	72	100

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Figure 1: Graph representing Chlorophyceae, Bacillariophyceae, Cyanophyceae and Euglenophyceae with order and species in Nirmal district, Godavari river.

Table 3: Calculation of Simpson Index and Simpson Reciprocal Index Nirmal district, Godavari

 river.

S.No	Class	No. of species	n(n-1)
1	Chlorophyceae	37	1332
2	Bacillariophyceae	13	156
3	Cyanophyceae	18	306
4	Euglenophyceae	4	12
Total		N=72	Σ n(n-1)=1806

The results of Phytoplankton species Documentation in Godavari river, the 72 species of algal members included 37 species from the Chlorophyceae, 13 species from the Bacillariophyceae, 18 species from the Cyanophyceae, and 4 species from the Euglenophyceae. similar findings were identified by Desikachary . T.V. 1959; Tiwari A,A Rana and SVS Chauhan 2003 (Table 1). According to Table 2, has a composition of 51.38% Chlorophyceae, 18.07% Bacillariophyceae, 25.00% Cyanophyceae, and 05.55% Euglenophyceae in Figure 1, was in sink with Dr.J.W.Prakash (2016). The Chlorophyceae family has the greatest variety of species, with 37 different kinds, while the Euglenophyceae family had the fewest, with only four different kinds.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 4, 2023

The Godavari River possesses the greatest variety of phytoplankton, which is consistent with the findings of Chinnaiah B. Ramesh babu M. and Digamber Rao, B. 2011; Odelu. G. 2015; Kumara swamy B. et al., 2013. According to Pradhan et al. (2014), the upper Godavari of today is distinguished by low suspended sediment load and very high phytoplankton productivity. The Simpson Index was calculated as, D=1806/5112=0.35 and Simpson Reciprocal Index=1-0.35=0.65 shown in Table 3.

CONCLUSION

River Godavari showed variation with sampling sites, the river constitutes high nutrient concentration due to human activities which resulted in proliferated growth of algae, that had direct impact on flora and fauna lived in water bodies. The collection from the study sites showed rich algae belonging to various classes, such as Chlorophyceae, Bacillariophyceae, Cyanophyceae and Euglenophyceae.

REFERENCES

1. APHA 1995. American Public Health Association. Standard methods for the examination of water and waste water , 19th edition, washinton.

2. Chakraborty, S., Bhattacharya, S., Feudel, U., & Chattopadhyay, J. (2012). The role of avoidance by zooplankton for survival and dominance of toxic phytoplankton. *Ecological complexity*, *11*, 144-153.

3. Chinnaiah B. Ramesh babu M. and Digamber Rao , B. 2011: Phytoplankton diversity and population dynamics of Ramappa lake,(A.P) *India.ad.plant.sci.*,24(II) : 527-529.

4. Desikachary . T.V. 1959: *Cyanophyta* , ICAR, Monographs on Algae. New Delhi, 686.

5. Dr.J.W.Prakash (2016). Chlorophycean *Diversity of selected ponds in Etturunagaram* wild life Santuary, Warangal District, Telangana, India. International journal of Applied sciences (ISSN 2455-4459), 4(3), 454-459.

6. Fritsch FE 1961. *The structure and reproduction of the algae*. Cambridge University Press London.

7. Ghosh, S., Barinova, S., & Keshri, J. P. (2012). Diversity and seasonal variation of phytoplankton community in the Santragachi Lake, West Bengal, India. *QScience Connect*, 2012(1), 3.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 4, 2023

8. Jain, S. K., Agarwal, P. K., Singh, V. P., Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). Mahanadi, Subernarekha and Brahmani basins. *Hydrology and Water Resources of India*, 597-639.

9. Kharake A, Pathare J, Deshmukh P (2021) Spatio-temporal variability of intra-monsoonal rainfall in Pravara-Mula river basin, India. Arebian J Geosci 14(10):1–10.

10. Kumara swamy B. Dup singh L. Ramesh babu M. and Digamber Rao B. 2013: Study *of Algae from fresh water reservoirs of Warangal (A.P.)*.India. Nature Environment and pollution technology, 12 (4): 577-584.

11. Misra, T. N., Singh, R. S., Pandey, H. S., Prasad, C., & Singh, B. P. (1992). Antifungal essential oil and a long chain alcohol from Achyranthes aspera. *Phytochemistry*, *31*(5), 1811-1812.

12. Odelu. G. 2015: Phytoplankton Studies in Kalvar Reservior of Karimnagar District of Telangana, India. International journal of Current Research Vol.7, Issue, 12, pp. 23431-23437.

13. Pal, S., Chatterjee, S., pada Das, K., & Chattopadhyay, J. (2009). Role of competition in phytoplankton population for the occurrence and control of plankton bloom in the presence of environmental fluctuations. *Ecological modelling*, *220*(2), 96-110.

14. Philipose M T 1967: *Chlorococcales*, Indian council of Agriculture Research, New delhi pp 365.

15. Pradhan, U.,Wu, Y., Shirodkar, P., Zhang, J., and Zhang, G. 2014: Multiproxy evidence for compositional change of organic matter in the largest tropical (peninsular) river basin of India, J. Hydrol., 519, 999–10009.

16. Presscot G W 1962. *Algae of the Western great lakes Area*.Pub Cranbook.Institute of Science Bullenton No. 30.

17. Tiwari A,A Rana and SVS Chauhan 2003. Studies *on the Algal flora of Bandh Beratha water reservoir of Barathpur District*, Rajastan Ann Forest 11(2): 187-192.

18. Tiwari A,A Rana and SVS Chauhan 2003. Studies *on the Algal flora of Bandh Beratha water reservoir of Barathpur District*, Rajastan Ann Forest 11(2): 187-192.

