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Abstract: 

Polyaniline decorated Silver nanoparticles (PANI@AgNPs) composites were successfully 

synthesized by sonochemical oxidative polymerization utilizing an equimolar amount (1:1) of 

AgNO3/Aniline dissolved in each 25 ml of water/methanol separately, mixed slowly, and then 

held in a sonicator for 45 minutes in a dark environment. No other external oxidizing agents 

were employed for polymerization; only AgNO3 was used as a metal precursor and as oxidizing 

agents. Various instrumental techniques HR-TEM, FE-SEM, XRD, TGA, UV-vis., and FT-IR 

were used to analyze the PANI@AgNPs. The PANI@AgNPs/GCE had good electrochemical 

responses and electrocatalytic activity over the detection of hydrogen peroxide (H2O2), according 

to a cyclic voltammogram. H2O2 is oxidized at the surface of PANI@AgNPs/GCE has clearly 

reveal by the voltammetry techniques of cyclic, amperometric, and differential pulse 

voltammetry. The detection limits 0.03 M was found at amperometric analysis for H2O2. 

 
Keywords: PANI@AgNPs, Sonochemical oxidative polymerization, Electrochemical sensor, 

H2O2 oxidation 
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1. Introduction 

Conducting polymers and their nanocomposites have acquired great interest for their potential 

application in a various fields. Nanocomposites can be made in a simple and low-cost manner for 

a variety of benefits, including environmental stability and flexibility, as well as chemical 

inertness. As previously stated, the backbone of the polymeric chain along their extended 

conjugated -bond is the source of intrinsic electrical conductivity in these polymers. It's vital to 

remember that due to their extended conjugate-bond structure, conjugated organic molecules can 

have semiconductor properties. Polymers with this type of inherent structure are known as 

intrinsically conductive polymers. These polymers can be divided into four groups based on their 

technological utility: polypyrrole (PPy), polyaniline (PANI), poly (3, 4-ethylenedioxythiophene) 

(PEDOT), and polythiophene (PTh) [1-5]. 

The conduction polymers were synthesized utilizing a variety of polymeric processes and several 

oxidants were used to oxidize its monomers. The oxidation potential of these materials is a 

critical factor in their selection and predilection for polymerization [6-9]. Different noble metal 

salts, such as AuCl4, PtCl2, PtCl4, AgNO3, and HAuCl4, can be employed as oxidation agents in 

some circumstances to avoid the use of some harmful oxidative agents and to be able to directly 

deposit noble nanoparticles onto conductive polymer nanostructures. To make "polypyrrole 

(PPy) nanofiber/Au or Pt nanoparticle" composites, 3H2O was used. Because of their lower 

oxidation potential, oligomers were sometimes employed instead of monomers [10-14]. Carl 

Julius Fritzsche (a German chemist) was the first to invent the PANI in 1840. PANI has piqued 

the interest of many scientists since its development, prompting them to examine the polymer 

from a variety of perspectives. Chemical oxidative and electrochemical polymerization are the 

most widely utilised synthesis strategies for generating PANI from aniline monomer. Aside from 

these two ways, the PANI is produced via interfacial, template, seeding techniques, and electro 

spinning processes. The inclusion of an acid doping agent during the polymerization by acidic 

medium can make PANI electrically conductive in nature [15-20]. 

The nature of the structure and varied features of the PANI backbone can be determined by the 

overall polymeric chain, which is generally formed of successively alternating benzene rings and 

nitrogen atoms that exist as imine (sp2 hybridised) or amine (sp3 hybridised) forms present. 
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According to their redox proportions, there are four well-known variants of PANI available in 

prior reports [12]. Pernigraniline has a pink/purple colour when fully oxidised, and 

Leucoemeraldine has a pale brown colour when entirely reduced, and neither form has a 

conducting characteristic [13]. Color can be used to distinguish the emeraldine state of PANI, 

which lacks conducting capacity (blue). Only the protonated emeraldine form (partially 

oxidized/reduced) has conducting properties, which are derived from protonated charge carriers 

created following acid treatment (reversible reaction by base treatment) [11]. PANI is a dark 

green solid with a flexible solid structure that is insoluble, infusible, and intractable. It is soluble 

in organic solvents and has a processable conductivity of 1 to 10 S/cm [21-26]. 

In this present investigation, PANI@AgNPs/GCE modified electrode used as an electrocatalyst 

for the detection of H2O2. Generally, H2O2 is the simplest peroxide (a compound with an oxygen-

oxygen single bond). Hydrogen peroxide is a clear liquid, slightly more viscous than water. In 

dilute solution, it appears colour less. Due to its oxidizing properties, hydrogen peroxide is often 

used as a bleach or cleaning agent. It is considered a highly reactive oxygen species, due to its 

strong oxidizing capacity. Hydrogen peroxide has wide range of application in various fields like 

environmental, pharmaceutical, clinical, industrial research and it is the by- product of a large 

number of oxidize enzymes of the reaction catalyst. The detection of hydrogen peroxide is an 

important aspect in biomedical and environmental applications. Electrochemical sensors are of 

particular interest for their practicality, simplicity, low cost, and suitability for real time 

detection. H2O2 is oxidized at the surface of PANI@AgNPs/GCE has clearly reveal by the 

voltammetry techniques like cyclic, amperometric, and differential pulse voltammetry. 

2. Experimental Methods 

 Chemicals 

S.D. Fine Chemicals P.Ltd. India supplied the aniline, AgNO3, and other chemicals. Qualigens 

Pvt. Ltd. in India provided all solvents, and deionized water was used to make all stock solutions. 

 
 Synthesis of PANI@AgNPs nanocomposite 

Synthesis of PANI@AgNPs using oxidation polymerization (scheme 1). 0.068 g of AgNO3 was 

dissolved in 20 mL ultra-pure water in a beaker. Subsequently, 0.037 g aniline was dissolved in 
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20 mL methanol by sonication, which was added slowly in to the aqueous phase resulting in the 

formation of a completely miscible. After 10 minutes the reaction mixture turn in too deep red 

colour is due to the formation of AgNPs in static condition, and the reaction was allowed to kept 

2 days for the complete formation PANI@AgNPs nanocomposites which is confirmed by the 

formation of green precipitate in a beaker. PANI@AgNPs isolated by filtration and by 

extensive washing with corresponding solvents and methanol to remove all un-reacted monomer 

and other soluble oligomers and dry the composite in room temperature [18]. 

 Instrumentation 

PANI@AgNPs were disseminated in N-Methyl-2-pyrrolidone using an ultrasonicator to obtain 

electronic spectra using a SHIMADZU-1800 (UV-Vis. Spectrophotometer) from Japan and FT- 

IR spectra using a Perkin Elmer Y-40 from the United States. Philips, JSO debye Flex 2002 

Seifert with 10°/min scanning speed was used to evaluate the XRD pattern. HITACHI, SU6600 

with voltage 0 kV (FE-SEM), Japan validated the morphology, size, and forms of the 

nanoparticles, while HR-TEM images were taken with a JEOL-3010 apparatus. 

 
3. Results and Discussion 

The UV-vis spectrum of PANI@AgNPs generated using the oxidative polymerization 

technique is shown in Figure 3. For the UV-vis. spectral analysis, N-Methyl-2-pyrrolidone was 

utilised as a solvent. Only two peaks are seen in spectral analysis at 302 nm and 570 nm, which 

are attributed to the benzenoid ring's π-π* transition and molecular exciton for the quinoid form 

of the PANI backbone [4, 20]. 
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Fig.1: UV-visible spectrum of PANI@AgNPs 

 
The FT-IR spectral response of PANI@AgNPs is shown in Figure 4. The N–H stretching 

is visible in the spectra of PANI@AgNPs bands at 3380 cm
−1

, whereas the C–H stretching is 

visible at 2988 and 2870 cm
−1

. The C-N stretching is assigned to the band at 1316 cm
−1

, whereas 

the responses at 1119 and 882 cm
−1

 correspond to the C–H in-plane and out-of-plane bending of 

the polymer matrix, respectively. The quinoid and benzenoid rings present in the polymer matrix 

are responsible for the peaks detected at 1598 and 1500 cm
−1

. All of these results indicate that 

PANI@AgNPs were produced sequentially using a single oxidation polymerization technique [4, 

20]. 

Fig.2: FT-IR spectrum of PANI@AgNPs 
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PANI@AgNPs (Fig. 5) were subjected to a thermogravimetric analysis (TGA) at RT-800 

°C in N2 atm with a heating rate of 20 °C/min. It was discovered that the produced 

nanocomposites decomposes in three stages. first the degradation of (∼100 °C), is due to the 

removal of water molecules/moisture from the polymer and second in the temp range 271-310 °C 

is the removal of acid dopant and third has rapid weight loss (483-583 °C) is attributed the 

decomposition of PANI. The mass percentage of composition of metal that remains after the 

degradation of the polymer for PANI@AgNPs is approximately 65.0 ± 0.5 %. It confirms the 

PANI@AgNPs have a greater thermal stability by the presence of Ag NPs, which control heat 

motion in the composite [27, 28]. 

 

 
Fig.3: TGA spectrum of PANI@AgNPs 

 
Figure 6 shows the XRD pattern of PANI@AgNPs. The spectrum reveals a broad 

background peak with a typical superimposed peak at 2θ = 20°, indicating that the polymer is 

amorphous and somewhat crystalline. The other four peaks at 2θ = 38.0, 44.5, 64.5, and 77.7 are 

attributed to the (111), (200), (220), and (311) Bragg reflections of the Ag plane, respectively. 

The XRD patterns demonstrate the existence of Silver nanoparticles trapped within the polymer 

matrix [20, 28]. 
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Fig.4: XRD spectrum of PANI@AgNPs 

 
The FE-SEM images of the PANI@AgNPs nanocomposites are shown in Figure 7(a-c). 

The nanocomposite's shape resembled that of a polymer matrix, with chunks arranged in a 

fiberous pattern. EDX spectrum (d) and percentile table (inset) showed the existence of 

immobilised Silver nanoparticles in the polymer matrix, and HR-TEM pictures are displayed in 

Fig. 8. (a-c). PANI@AgNPs nanocomposites have a spherical morphology of the Ag 

nanoparticles located inside the polymer matrix, as seen in the photos, with sizes ranging from 

10 to 30 nm, with the majority of them falling within the 20 nm range [4, 27,33,34]. The data 

presented above will be sufficient to demonstrate the creation of Au NPs during the oxidative 

polymerization process. 
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Fig. 5: FE-SEM images of oxidation polymerized PANI@AgNPs 

 

 
Fig. 6: HR–TEM images of PANI@AgNPs. 

 
Electrochemical oxidation of H2O2 

 
Figure 7 shows the electrocatalytic oxidation of H2O2 using PANI@AgNPs composites modified 

GCE in presence of 0.1 M PBS (pH 7) at scan rate 50 mV/s and it reveal the good 

electrochemical responses during successive addition of 1.0–5.0 μM H2O2. As seen, the anodic 

peak current increases linearly with each addition of 1.0 μM concentration, so it could be 

concluded that the PANI protected silver composites modified GCE showed good electro- 

catalytic activity towards H2O2 [29]. 
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Fig. 6. CV for the oxidation of H2O2 at scan rate 50 mV/s with successive addition of H2O2 (1–5 

μM) in 0.1 M PBS (pH = 7.0) 

Figure 8 shows the amperometric determination of H2O2 oxidation using Ag@PANI 

modified in GCE in 0.1M PBS (pH 7) electrolyte with applied potential 0.6 V in every 25 s 

addition the current was measured and its corresponding calibration plots are noted as (b). In 

addition that the level of the Cottrell current increases with increasing concentration of H2O2. 

The response is linearly proportional to the concentration of H2O2 in the range of 1.0 ─ 9.0 μM. 

The linear regression equation was (y(μA) = -0.73x – 3.50 μM with the correlation coefficient 

being 0.9802 and the detection limit was computed to be 1.23 μM at a signal-to-noise ratio of 3, 

and its calibration plot are shown in Fig. (b) and it confirm are higher electrocatalytic activity 

reveal by the linear oxidation over H2O2 oxidation [30-32]. 
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Fig. 8. (a) Amperometric deterrminaiton for the oxidation of H2O2 in 0.1 M PBS (pH = 7.0 and 

potential of + 0.6 V) with successive addition of 10.0–90.0 μM and (b) its corresponding 

calibrations plot. 

4. Conclusion 

 
In summary, we have synthesized PANI@AgNPs successfully using sonochemical oxidative 

polymerization method. Here, No other external oxidizing agents were employed for synthesis; 

only AgNO3 was used as a metal precursor and as oxidizing agents. Various instrumental 

techniques HR-TEM, FE-SEM, XRD, TGA, UV-vis., and FT-IR were used to analyze to 

confirms its structure, size and shapes of the nanocomposites and electrocatalytic activity over 

the detection of hydrogen peroxide (H2O2) using cyclic voltammetry and chronoamperometry, 

which reveals the modified electrode has good sensor activity over the H2O2 determination. In 

this present investigation, the detection limit was computed to be 1.23 μM at a signal-to-noise 

ratio when we added the successive addition of H2O2 (1.0 ─ 9.0 μM). 
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