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ABSTRACT 

 

 The introduction by Hoerl and Kennard (1970) of a ridge regression estimator 

to deal with the problem of multicollinearity in regression analysis has been followed 

by a number of research articles in the statistics literature. The defined a class of 

estimators characterized by a scalar called Ridge parameter. By reducing the linear 

regression model to its canonical form, they proposed the general Ridge regression 

estimator. 

 

 In the present study, an adaptive general combined restricted Ridge regression 

estimator based on an iterative procedure has been proposed by combining the 

restricted least squares estimator with a ridge regression estimator.  

 

I. INTRODUCTION: 

 

A serious problem that can occur in regression analysis is the presence of 

muticollinearity among the independent variables in a regression equation. The 
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multicollinear problem may arise when some or all of the explanatory variables in a 

regression are highly correlated with one another. 

 

The main consequences of multicollinearity are: 

 

i) The precision of estimation falls so that it becomes very difficult to obtain 

precise estimates of the regression coefficients.  The loss of precision has three 

aspects.  

 

a) Specific estimates have very large errors. 

b) These errors may be highly correlated with one another. 

c) The sampling variances of the coefficients will be very large. 

 

ii) Estimates of regression coefficients become very sensitive to particular sets of 

sample data and the addition of a few more observations or deletion of a few 

observations can sometimes produce dramatical shifts in some of the 

coefficients.  

 

iii) If multicollinearity is high, one may obtain a high value of R2 and very few 

estimated regression coefficients are statistically significant. 

 

 In presence of multicollinearity, certain biased estimation procedures like 

Ridge regression, Generalized inverse estimator, principal component regression, 

Liu estimator are used to improve the efficiency of ordinary least squares (OLS) 

estimates in the linear regression model. 

 

The introduction by Hoerl and Kennard (1970) of a ridge regression estimator to 

deal with the problem of multicollinearity in regression analysis has been followed by 

a number of research papers in the Statistical literature. They defined a class of 

estimator’s characterized by a scalar called ‘Ridge parameter’. First, they presented a 

scheme for choosing the scalar with the help of ‘Ridge Trace’ and observed that the 
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regression coefficient estimators stabilize for small values of the Ridge Parameter. 

Then, by reducing the linear regression model to its canonical form, they defined the 

general ridge regression estimator.  

 

The main contributions made to the field of inference in linear regression 

models under multicollinearity by  Farrar and Glauber (1967),  Rama Sastry (1970), 

Marquardt and Snee (1975), Webster, Gunst and Mason (1975), Krishna Kumar 

(1975), Vinod (1979), Willan and Watts (1978) Swamy, Mehta, Thurman and Iyengar 

(1985), Judge and Griffiths (1985), Mehta, Swamy and Iyengar (1993) and others. 

 

The present study some new ridge regression inferential techniques have been 

developed to estimate the parameters of linear regression models under the problem of 

multicollinearity. 

 

II. RESTRICTED LEAST SQUARES ESTIMATOR: 

 

Consider a standard linear regression model  

 

n 1 n 1n k k 1Y X  =  +                (2.1) 

 

      1 2

nE 0,E I  =  =        

 

Assuming that two or more explanatory variables in X are closely related so 

that the model is subject to the problem of multicollinearity.   

 

 A set of a prior q restrictions on the parameters may be written as  

     

    R r =        (2.2) 

Where R is a (q K)  matrix of known prior information design matrix that expresses 

the structure of information on the individual parameters or some linear combinations 

of the parameters.  
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   r is a  (q 1)  vector of known elements  

    is a (K 1)  vector  of unknown  parameters 

 

 The restricted least square estimator R
ˆ( )  for  can be obtained by minimizing 

1(Y X ) (Y X )−  −   subject to the restrictions R r = . It is given by 

 

  
1

1 1 1 1 1 1

R
ˆ ˆ ˆ(X X) R R(X X) R (r R )

−
− −  = + −              (2.3) 

 

where ̂ = 1 1(X X)− 1X Y  is the unrestricted OLS estimator of   . 

 

( )R
ˆE , unless R r    =  holds  

 

 The dispersion matrix of R̂  is given by  

 

 Var ( )
1

2 1 1 2 1 1 1 1 1 1 1 1

R
ˆ (X X) (X X) R R(X X) R R(X X)

−
− − − −  =  −      (2.4) 

 

Since, 2 1 1ˆVar( ) (X X)− =  , one may be concluded that the R
ˆ( )  has  a smaller  

sampling variance than the estimator ̂ . 

 

Also, the MSE of R̂  is given by  

 

 
1

2 1 1 1 1 1 1 1 1 1 1

R
ˆMSE tr (X X) (X X) R R(X X) R R(X X)

−
− − − −     =  −      

 

 

 
1 1

1 1 1 1 1 2 1 1 1 1(r R ) R(X X) R R(X X) R R(X X) R (r R )
− −

− − −   + −  −       (2.5) 

 

III. ORDINARY RIDGE REGRESSION ESTIMATOR: 

 

Consider the family of ordinary ridge regression estimators.  

    

  
1

1 1

k
ˆ( ) X X I X Y, 0

−

   = +          (3.1) 
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  or 
1

1 1

k
ˆ ˆ( ) I (X X)

−
−   = +         ( 3.2) 

 
ˆE ( )    
 

 and the  Bias of ˆ( )   is given by  

 

  Bias 
1

1

k
ˆ( ) (X X) I

−
     =  +    

     (3.3) 

 

Also, Var
1 1

2 1 1 1

k k
ˆ( ) X X I (X X) X X I

− −
       =  +  +     

    (3.4) 

 

Thus, ˆ ˆVar( ) Var( ( ))  −  
 

 is non negative definite matrix  for 0   

 

It should be  noted that the ˆ( )   can be obtained by minimising 1   subject to 

1 1ˆ ˆ( ) X X( )− − =   

 

Where   is fixed value  

 

OPTIMUM VALUE OF RIDGE PARAMETER: 

 

Let G  is  an ortho normal  matrix whose  columns are normalized Eigen  

 

vectors of  1X X  

  

i.e., 1G I=  and  

 

 

1

1 1

2 1 2 k

k

0..... 0

G X XG 0 .... 0 and ....

0 0

 

 
 =       
 
  

      (3.5) 

 

Write Y X= + 

   1XGG= +   

Y Z = +               (3.6) 

 

Where 1Z XG, G=  =   
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Now, the OLS estimator of   is given by  

1
1 1 1 1ˆ G X XG G X Y

−

  =    

       
1

1 1 1 1 ˆG X XG G X X
−

 =    

       
1

1 1 1 1 1ˆG X XG G X XG G
−

 =    

1ˆˆ G =        (3.7) 

 

 An ordinary ridge regression estimator of  is given by  

 

1ˆˆ ( ) G ( )  =          (3.8) 

 

Also,  
1

1 1ˆ ˆ( ) I (Z Z)
−

−   = +     

 

            
1

1 1 1ˆ ˆ( ) I (G X XG)
−

−   = +         (3.9) 

 

Since, 1ˆˆ G =  , we have  

 
1

1 1 1 1 1 1 ˆˆ ( ) I (G X XG) G I (X X) ( )
−

− −     = +  +           (3.10) 

 

 It can be  easily seen that  (3.7) and (3.9) are equivalent.  

 

Since 1 1( X X )   is diagonal matrix, it follows that  

 

j

j

j j
ˆ ˆ( )

 
  =  

 +   

 j =1,2,….,k         (3.11) 

 

 An optimum  value of  is given by  

 

opt
2

1

ˆ
K ,

ˆ ˆ


=

 
 ,                (3.12) 
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where 
1

2
ˆ ˆ(Y X ) (Y X )

ˆ
n K

−  − 
 =

−
 

 

 

When 1(X X) I= , the value of  that minimizes the sum of the mean square 

errors is  equal to 
2

1

K

 
        (3.13) 

 

IV.      PROPOSED COMBINED RESTRICTED RIDGE REGRESSION   

 ESTIMATOR: 

 

Replacing ̂  by R
ˆ ,  the restricted ridge regression estimator for  is given by  

  

 
1

1 1

R k R
ˆ ˆ( ) I (X X) , 0

−
−   = +                   (4.1) 

 

Where R̂  is the Restricted least squares  estimator  of .  

 

If R R
ˆ ˆ0, then ( ) =   =  0               (4.2) 

 

The ordinary ridge regression estimator ˆ( )   can be obtained by minimizing 

1   subject to 1 1

R R R
ˆ ˆ( ) X X( ) ,− − =  where  R  is fixed.  

 

Using  the linear restrictions R=r, one can obtain 

 
1 1 1

1 1 1 1 1 1 1 1 1 1

R k k
ˆE ( ) I (X X) I (X X) (X X) R R(X X) R (r R )

− − −
− − − −         = +  + +  −       

 (4.3) 

 

The restricted ridge regression estimator  R
ˆ ( )   is always  a biased  estimator 

of  unless =0  and (r R ) 0−  =  , a null vector.  

 

Further,   

 
1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1

R k k

111ˆ ( ) I (X X) (X X) (X X) R R(X X) R(X X) I (X X)Var R
− −

− − − − − −
−

  =  +  − +             

                   (4.4) 

Also, the MSE of R
ˆ ( )   is given by  
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1
1

2 1 1 1 * 1

R k
ˆMSE ( ) tr TLT T(X X) X X I

−
−        =  +  − +         

 

   
1

1 1 k 1

kT(X X) X X I
−

−   − +    
    (4.5) 

 

 Where 
1 1

1 1 1 1 1 1 1 1 1 1 1 1

kT I (X X) ,L (X X) (X X) R R(X X) R R(X X)
− −

− − − − −   = +  = −     

 

    
1

* 1 1 1 1R R(X X) R (r R )
−

−  = −     

 

under the restrictions are true, i.e., (r R )−  = 0, the  

R
ˆMSE ( )  
 

 reduces to  

 
2

2 1 2 1 1

R k
ˆMSE ( ) tr TLT X X I

−
       =  +   +      

    (4.6) 

 

Consider an optimum value of  based on Restricted  least squares estimator is 

given by  

2

R
R 1

R R

ˆˆ K
ˆ ˆ


 =

 
       (4.7) 

Where  
1

2 R R
R

ˆ ˆ(Y X ) (Y X )
ˆ

n K

−  − 
 =

−
      (4.8) 

  
1

1 1 1 1 1 1

R
ˆ ˆ ˆ(X X) R R(X X) R (r R )

−
−  = + −               (4.9) 

 

Here, ̂  is the  OLS estimator of . 

 

Now the proposed combined restricted  ridge regression estimator  for  is 

given by  

1
1 1

R R k R R R
ˆ ˆ ˆ ˆ ˆ( ) I (X X) , 0

−
−   = +   

 
            (4.10) 

 We have R R R
ˆ ˆ ˆ( )  =   when R

ˆ( ) 0 = . 

 

By considering the linear restrictions on parameters R=r, one may  obtain  
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1 1 1
1 1 1 1 1 1 1 1 1 1

R R k R k R
ˆ ˆ ˆ ˆE ( ) I (X X) I (X X) (X X) R R(X X) R (r R )

− − −
− − − −         = + + + −       

 

              (4.11) 

 Thus , R R
ˆ ˆ( )   is  always a biased estimator of  unless  

 

R
ˆ 0 and (r R ) 0, = −  =  a null vector  

 

The variance covariance matrix of R R
ˆ ˆ( )   is  given by  

 

 
1

1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R R k R k R

ˆ ˆ ˆ ˆ( ) I (X X) (X X) (X X) R R(X X) R R(X X) I (X X)Var
− − −

− − − − − −
  =  +  − +             

           (4.12) 

 

The mean squared error of the proposed combined restricted ridge regression 

estimator is given by  

        
1

1 1
2 1 1 1 * 1 1 1 * 1

R R R R R R R k R R R K

ˆ ˆ ˆ ˆ ˆ ˆMSE ( ) tr T LT T (X X) X X I T (X X) X X I
− −

− −

  =  +  −  +    −  +   
   

                   (4.13) 

 

 Where 
1 1

1 1 1 1 1 1 1 1 1 1 1 1

R K R
ˆT I (X X) ,L (X X) (X X) R R(X X) R R(X X)

− −
− − − − −   = + = −   

 

 
1

* 1 1 1 1R R(X X) R (r R )
−

−  = −    

 

If the  linear  restrictions are true i.e., (r R )−  =0 then  the   

 

MSE R R
ˆ ˆ( )  
 

 reduces to  

 
2

2 1 2 1

R R R R R R k
ˆ ˆ ˆMSE ( ) tr T LT (X X) I

−

      =  + +     
    (4.14) 

 

To compare the performance of the proposed combined restricted ridge 

regression estimator R R
ˆ ˆ( )   with (i) the restricted least squares estimator R̂  and  (ii) 

the ordinary Ridge Regression estimator ˆ( )  . We use  the following  two criteria  

based on Minimum sampling variance under the (r R ) 0−  =  
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(i)  2 1

R R R R R
ˆ ˆ ˆVar Var ( ) L T LT      −   =  −    

 

 

 2 1 1 1 1 2 1 1 1 1 1

R R R R R
ˆ ˆ ˆT (X X) L L(X X) (X X) L(X X) T− − − − =   +  + 
 

 

                      (4.15) 

 

Since  1 1(X X)−  is positive  definite  and L is positive semi definite, it  can easily 

be  shown that  all the characteristic roots of 1 1(X X) L−  are non negative  so that 

1 1(X X) L−  is a non negative definite matrix.  

 

Since 1 1 1 1(X X) L(X X)− −  is positive definite  and from (5.6.33) it can be seen that 

R R R
ˆ ˆ ˆVar( ) Var ( )  −  

 
 is positive semi definite for k

ˆ 0  .  

Thus the sampling variance of the proposed combined restricted ridge 

regression  estimator R R
ˆ ˆ( )   is always less  than or equal to that  of the  restricted least 

squares estimator R̂ .  

 

(ii) Var    
1 1

1 1 1 1 1 1 1 1 1

R R R R k R k

1ˆ ˆ ˆ ˆ ˆ ˆ( ) Var ( ) X X I (X X) R R(X X) R(X X) X X IR
− −

− − −
  −   = +  +             

                 (4.16) 

 Which  is a positive  semi definite matrix for R
ˆ 0  .  

 

Thus the proposed combined restricted ridge regression estimator R R
ˆ ˆ( )   is 

always  superior to the ordinary ridge regression estimator R
ˆ ˆ( )   by the criterion of  

sampling  variance. 

 

Remarks: One can compare the performance of the proposed combined restricted 

ridge  regression estimator with the restricted least squares estimator and 

an ordinary  ridge regression estimator of  by means  of the criteria of 

minimum  mean squared  error under the two cases of (i) The liner 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL 

SCIENCES 

ISSN PRINT 2319-1775 Online 2320-7876 

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 10, Iss 4, April   2021 

 

      994 | P a g e 

restrictions  about the parameters are true i.e., (r R ) 0−  =  and (ii) the linear  

restrictions  about the parameters   are not true i.e., (r R ) 0−   . 

 

V. A NEW ADAPTIVE GENERAL COMBINED RESTRICTED RIDGE  

      REGRESSION ESTIMATOR: 

 

 Consider a classical  linear regression model  

    n 1 n k k 1 n 1Y X   =  +                 (5.1) 

      1 2

nE 0 and E I  =  =    

 

  follows multivariate normal distribution N[0, 2

nI ]. 

 

 The OLS estimator of  is given by  1 1 1ˆ (X X) X Y− =  

  

 Suppose that the set of a priori linear restrictions on the parameters are 

represented by. 

    q K K 1 q 1R r   =          (5.2) 

 The restricted least squares estimator of  is given by  

 

  
1

1 1 1 1 1 1

R
ˆ ˆ ˆ(X X) R R(X X) R (r R )

−
− −  = + −          (5.3) 

 

 It should be noted that the R̂  can be obtained by minimizing 1(Y X ) (Y X )−  −   

subject to the restrictions given in (5.7.2), 

 

 We have, R
ˆE    
 

 unless (5.7.2) holds. Also, the variance covariance matrix  

of R̂  is given by. 

 

 Var 2 1 1 1 1 1 1 1 1 1 1 1

R
ˆ( ) (X X) (X X) R (R(X X) R ) R(X X)− − − − −  =  −       (5.4) 

 

 An  ordinary ridge  regression  estimator for  is given by  
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1

1 1ˆ( ) X X I X Y, 0
−

   = +            (5.5) 

 

 By  reducing the linear regression model (5.7.1) to its canonical form, the 

General Ridge Regression  estimator for  may be defined.  

 

 Denote 1(X X) P= , where P=Diag 1 2 k, ,....,    is a (K K)  diagonal matrix. 

 

The  General Ridge Regression estimator  for   is given by  

 

 
1 1ˆ( ) P X Y
−

  = +                                 (5.6) 

 

Where   is  a diagonal matrix  with non- negative elements 1 2 k, ,.......,    as  

characterizing  scalars.   

 

We write the  OLS estimator of  using  P as  

 
1 1ˆ P X Y− =                       (5.7) 

 

From (5.7.6) and  (5.77), the General Ridge Regression estimator for  can be 

written as  

 1ˆ ˆ ˆ( ) [P ] P Q−  = +   =         (5.8) 

 

Where  
1

Q P P
−

= +  

 

Replacing the OLS estimator ̂  by the  restricted least squares  estimator R̂  in 

(5.7.8) gives  the restricted general ridge regression estimator  for  as  

 

R R
ˆ ˆ( ) Q  =            (5.9) 

Where   
11 1 1Q P P (X X) (X X)
−−

 = +  = +   
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We have, 
1

1 1 1 1 1 1

R R
ˆ ˆE ( ) QE Q (X X) R R(X X) R (r R )

−
− −        =  = + −        

 

                                       
1

1 1 1 1 1 1Q Q(X X) R R(X X) R (r R )
−

− − = + −       (5.10) 

 

Thus R
ˆ ( )   is always  a biased estimator of  unless  i 0, i 1,2,.....,K =  =  and 

(r R ) 0−  = ,  a null vector. 

 

Further , Var
1

R R R R R
ˆ ˆ ˆ ˆ ˆ( ) E ( ) E [ ( )] ( ) E [ ( )]       =   −     −  
     

 

 
1

2 1 1 1 1 1 1 1 1 1 1 1

R
ˆVar ( ) Q (X X) (X X) R R(X X) R R(X X) Q

−
− − − −       =  −      

 (5.11) 

 

Also  the Mean squared  error of R
ˆ ( )   is  given by  

 

     
11 12 1 1 1 * 1 1 1 * 1

R
ˆMSE ( ) tr QLQ Q(X X) X X Q(X X) (X X)

− −− −
  =  +  −  +    −  +              

            (5.12) 

 

Where  
1

* 1 1 1 1R R(X X) R (r R )
−

−  = −    

 
1

1 1 1 1 1 1 1 1 1 1L (X X) (X X) R R(X X) R R(X X)
−

− − − − = −    

 

If  (r R ) 0−  =  then the  R
ˆMSE ( )  
 

 reduces to  

 

2
2 1 2 1 1

R
ˆMSE ( ) tr QLQ (X X)

−
       =  +   +      

             (5.13) 

 

Consider an optimum value for i  as  

2

i 2

i

ˆ , i 1, 2, ..... K


 = =


         [From (5.12] 

 

Using the restricted least squares estimator R̂  and the restricted least squares 

residual sum of squares, the proposed optimum value for i  as  



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL 

SCIENCES 

ISSN PRINT 2319-1775 Online 2320-7876 

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 10, Iss 4, April   2021 

 

      997 | P a g e 

  
2n
Rj

2
j 1R

Ri 2

Ri Ri

e

n k 1Sˆ , i 1,2,...,K
ˆ ˆ

=
− −

 = = =
 


            (5.14) 

 

Where, Rî  is  the thi  element of the Restricted  least squares estimator Rî  

 
2

Rj

j

e  is the restricted  least squares residual sum of squares.  

 

We propose an Iterative procedure, under which we first compute Ri
ˆ (0)  as  

2

R
Ri 2

Ri

Sˆ (0) ,i 1,2,...,K
ˆ

 = =


            (5.15) 

 

and    
1

R 0 0 R
ˆ ˆˆ ˆP P

−

     = + 
   

     ( 5.16) 

 

Where  R Ri R 2 RK
ˆ ˆ ˆˆ Diag (0), (0),...., (0) =     

 

and P = (X1X) 

 

At the second stage, compute, 

 
2

R
Ri Ri 2

Ri 0

Sˆ ˆ(1) as (1) ,i 1,2,....,K
ˆ ˆ( )

  = =
 

         (5.17) 

 

and 1

R 1 1 R
ˆ ˆˆ ˆ[ ] [ P ] P−  = +       (5.18) 

 

Where   1 R1 R2 RK
ˆ ˆ ˆˆ Diag (1), (2),......, (1) =     

We continue this Iterative  process until we get the same values  of Rî ’s  with  

desired number of decimal  points in two  consecutive stages of the process.  

 

Using the Iterative solutions of Ri ’s, the Ridge parameter matrix may be 

written as  
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 * * * *

R1 R 2 RK
ˆ ˆ ˆˆ Diag , ,...., =         (5.19) 

 

Now  the proposed  adaptive general combined  restricted  ridge regression  

estimator for  is given by  

 
1

* * *

R R Ri
ˆ ˆ ˆˆ ˆp P , 0

−

     = +   
   

           (5.20) 

 

We have, *

R R
ˆ ˆˆ   = 

 
 when 

i

*

R
ˆ 0, i 1,2,.....,K =  =  

 

By considering  the linear restrictions R=r, one may obtain  

 
1

* * * 1 1 1 1 1 1

R
ˆ ˆE ( ) Q Q (X X) R R(X X) R (r R )

−
− −     = + −   

    (5.21) 

 

Where 
1 1

* * 1 * 1ˆ ˆQ P P X X (X X)
− −

   = + = +
   

     (5.22) 

 

Thus , *

R
ˆ ˆ( )   is always  a biased estimator of , unless  

 

*

Ri
ˆ 0, i 1,2,....,K and (r R ) 0 =  = −  = , a null vector.  

 

The variance covariance matrix of *

R
ˆ ˆ( )   is given by  

 

Var
11

* 2 * 1 1 1 1 1 1 1 1 1 1 *

R
ˆ ˆ( ) Q (X X) (X X) R R(X X) R R(X X) Q

−
− − − −      =  −      

 

                                                                                     (5.23) 

Also, the MSE of *

R
ˆ ˆ( )   is given by  

 

   
1

1
1

* 2 * * * 1 1 * * 1 * 1 1 1 * * 1 * 1

R

ˆ ˆ ˆ ˆ ˆ ˆ( ) tr Q LQ Q (X X) X X Q (X X) (X X )MSE
−

− − −
  =  +  −  +    −  +            

           (5.24) 

Where 
1

* 1 1 1 1R R(X X) R (r R )
−

−  = −    

If (r R ) 0−  =  then the MSE *

R
ˆ ˆ( )  
 

 reduces to  
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MSE
1 2 2

* 2 * * * 1 1 *

R
ˆ ˆ ˆ ˆ( ) tr Q LQ X X

−
      =  +  + 

    
       (5.25) 

 

To compare the performance of the proposed adaptive general combined 

restricted ridge regression estimator *

R
ˆ ˆ( )   with (i) the  Restricted least squares  

estimator R̂  and (ii) the ordinary ridge regression estimator R
ˆ ( )  , one may use the 

following two criteria  based on minimum  sampling variance.  

 

Under the assumption that linear  restrictions are true i.e., (r R ) 0, it−  = can be 

easily  shown that  

 

(i) Var
1* 2 * *

R R
ˆ ˆ ˆVar ( ) L Q LQ 0     −   =  − 
     

            (5.26) 

 

(ii)  * *

R
ˆ ˆˆ ˆVar ( ) Var ( ) 0     −   
   

        (5.27) 

 

Thus the proposed new adaptive general combined restricted ridge regression  

estimator *

R
ˆ ˆ( )   is always superior to (i) the restricted least  squares  estimator R̂  

and (ii) the  ordinary ridge  regression estimator *

R
ˆ ˆ( )   for  by the  criterion of 

sampling variance.  

 

Remarks: one can compare the performance of the proposed new adaptive general 

combined  restrictive  ridge regression estimator with the restricted  least 

squares  estimator  and an ordinary ridge regression estimator  of  by 

means of the criteria of  Minimum  mean  squared   error  under the two 

cases of (i) (r R ) 0−  =  and (ii) (r R ) 0−   . 
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VI. CONCLUSIONS: 

 

In the present study, an adaptive general ridge regression estimator has been 

proposed by reducing the general linear regression model to its canonical form. An 

iterative procedure has been suggested to set the optimum values for characterizing 

scalars in the ridge regression estimator.  

 

A new combined restricted ridge regression estimator has been discussed by 

deriving its mean squared error. The performance of the proposed estimator with the 

restricted least squares estimator and an ordinary least squares estimator has been 

examined by using the criterion of sampling variance. As an extension, a new adaptive 

general combined restricted ridge regression estimator has also been proposed in the 

present study by using an iterative procedure for the solutions of elements of ridge 

parameter matrix. 
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