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Abstract 

 
In this article, author tries to describe some applications of the theory of Hilbert spaces to 

integral equations. The main goal is to illustrate possible applications of techniques 

developed in theory and to include the standard classification of the important integral 

equations (Volterra, Fredholm, Integro-Differential, Singular and Abel’s integral 

equations) and their solvability. The most available methods of the subject are abstract and 

most of them are based on comprehensive theories such as topological methods of 

functional analysis. 

Keywords: Volterra, Fredholm, Integro-Differential, Singular and Abel’s integral 

equations. 
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1. Introduction 

 
Among many contributions to the development of mathematics, the German mathematician 

David Hilbert (1862 - 1943) is known for his pioneering work in the field of functional 

analysis [6]. One of the cornerstones of functional analysis, the notion of a Hilbert space, 

emerged from Hilbert’s efforts to generalize the concept of Euclidean space to an infinite 

dimensional space [7]. The theory of Hilbert space that Hilbert and others developed has not 

only greatly enriched the world of mathematics but has proven extremely useful in the 

development of scientific theories, particularly quantum mechanics [1]. 
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For instance, the ability to treat functions as vectors in a Hilbert space, as permitted by 

Hilbert space theory, has enabled quantum physicists to solve difficult differential and 

integral equations by using mere algebra. What is more, the theory and notation of Hilbert 

space has become so ingrained in the world of quantum mechanics that it is commonly 

used to describe many interesting phenomenon, including the EPR paradox (entanglement), 

quantum teleportation, and quantum telecloning [3]. 

Unfortunately, much of the deep understanding behind Hilbert space theory is often lost in 

the translation from the mathematical world to the world of physicists. Given the 

importance of Hilbert space theory to quantum mechanics, a thorough mathematical 

understanding of the Hilbert space theory that underpins much of quantum mechanics will 

likely aid in the future development of quantum theory. As such, we explore some of the 

fundamentals of Hilbert space theory from the perspective of a mathematician and use our 

insights gained to begin an investigation of one mathematical formulation of quantum 

mechanics called quantum logic [4]. 

As we begin our exploration of Hilbert space, the reader is assumed to have some 

background in linear algebra and real analysis. Nonetheless, for the sake of clarity, we begin 

with a discussion of three notions that are fundamental to the field of functional analysis,  

namely metric spaces, normed linear spaces, and inner product spaces [5]. 

Few definitions are as fundamental to analysis as that of the metric space. In essence, a 

metric space is simply a collection of objects (e.g. numbers, matrices, pineapple flavored 

Bon Bons covered with flax seeds) with an associated rule, or function, that determines 

“distance” between two objects in the space [6]. Such a function is termed a metric. Perhaps 

the most intuitive example of a metric space is the real number line with the associated 

metric |x − y|, for x, y ∈ R. In general, though, a metric need only satisfy four basic criteria. 

 

Definition 1.1[7] 

 
A metric space (X, d) is a set X together with an assigned metric function d : X × X → R that 

has the following properties: 

Positive: d(x, y) ≥ 0 for all x, y, z ∈ X, Non degenerate: d(x, y) = 0 if and only if x = y, 

Symmetric: d(x, y) = d(y, x) for all x, y, z ∈ X 

Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X. 
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Definition 1.2 [8] 

 
A (complex) normed linear space (L, " • ") is a linear (vector) space with a function " • " : L 

→ R called a norm that satisfies the properties: Positive: "v" ≥ 0 for all v ∈ L, Non 

degenerate: "v" = 0 iff v = 0. Multiplicative: "λv" = |λ| "v" for all v∈∈ L and λ ∈C, Triangle 

Inequality: "v + w" ≤ "v" + "w" for all v, w ∈ L. Recall that a complex conjugate of a ∈ C is 

often denoted as a. We use this notation throughout this article. 

 
Definition 1.3 [9] 

If V is a linear space, then a function (•, •) : V × V → C is said to be an inner product 

provided that Positive: (v, v) ≥ 0, for all v ∈ V 

Non degenerate: (v, v) = 0 iff v = 0. 1The study of Hilbert space theory is a subset of the 

field of functional analysis. 

 

Multiplicative: (λu, v) = λ (u, v), for all u, v ∈ V and λ ∈ C, Symmetric: (u, v) = (v, u), whenever 

u, v ∈ V, Distributive: (u + w, v) = (u, v) + (w, v), for all u, v ,   ∈ V. 

 
A linear space V is defined to be the inner product space (V, (•, •)) if it has an inner product 

defined on it. 

The symmetry criterion in Definition 1.3 is sometimes referred to as Hermitian symmetry. 

For the sake of expediency, a normed linear space (L, " • ") is often denoted as L. Likewise, 

an inner product space (V, (•, •)) is commonly denoted V. In the following two theorems, we 

formalize our assertions about the relationships between metric spaces, normed linear spaces, 

and inner product spaces. 

 

2. Methodology 

 
 Parallelogram Law [10-11] 

 

The verification of the Parallelogram Law for complex normed direct spaces continues in 

almost an indistinguishable design as in the genuine case only more chaotic. For this reason, 

we preclude the more broad evidence of the Parallelogram Law for complex normed straight 

spaces and rather give the more informational confirmation of the Parallelogram Law for 

genuine straight vector spaces. 

Lemma 2.1. [3,5,7] Leave L alone a normed direct space. The standard k : L → R is 

consistent. 
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Proof. Let " L > 0 and pick = ". Presently pick a point an of L and any x 2 L to such an 

extent that along these lines k . k is consistent on L. 

Hypothesis  2.1  (Parallelogram  Law). (|    | , |     |=|    |  −|    |≤  ǁx  −  aǁ  <  ε.  and  utilize  the 

parallelogram fairness to show that '2 is an inward item space also. 

A normed direct space L is an inward item space if and just if its related standard (k k) satises 

the parallelogram  uniformity  ǁu + vǁ2 + ǁu − vǁ2 = 2ǁuǁ2 + 2ǁvǁ2, for each u; v 2 L. 

Proof. Assume L is an internal item space with related standard 

ǁu + vǁ2 + ǁu − vǁ2= <   +  ,   +   >=<   −  ,   −   > 

 
=<  ,   ><  ,   ><  ,   > +<  ,   >< − , −   > +<  , −  > +< − ,   > 

+< − , −  > 

=2 |   | 2 + 2 |   | 2 

 
=  2 ǁuǁ2 + 2 ǁvǁ2 . 

 
w 2 L. On the off chance that u; v 2 L, 

In this way ǁ • ǁ fulfills the parallelogram equity. Presently guess that L is a normed space 

whose standard fulfills the parallelogram equity. Characterize a capacity <. , . >: L × L → R 

by <  ,   > = 1,  ǁu + vǁ2 − ǁu − vǁ2    , for all u; v 2 L. We wish to show that h; i is an inward 

item. We start by noticing that hu; ui = 1, for all u 2 L. 

 

 
3. Main Results 

Theorem 3.1 

A normed linear space (L, " • ") is a metric space with metric d given by d(v, w) = "v − w", 

where v, w ∈ L. 

Proof. That d satisfies the positive and nondegeneracy requirements of metrics, can be seen as 

an immediate consequence of the positive and nondegeneracy properties of norms. The 

multiplicative property of normed spaces allows us to make the following simple calculation: 

d(v, w) = "v − w" = "(−1)(w − v)" = | − 1| • "w − v" = "w − v" = d(w, v), 

 
which demonstrates that d is symmetric. Finally, we need to show that d satisfies the triangle 

inequality. To do so, we choose any three x, y, z ∈ L. Since the vectors x − z and z − y are in L, 

the triangle inequality of norms allows us to see that 
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d(x, y) = "x − y" = "(x − z) + (z − y)" ≤ "x − z" + "z − y" = d(x, z) + d(z, y) 

 
Hence, since d is positive, nondegenerate and symmetric and satisfies the triangle inequality, 

we conclude that it is indeed a metric. 

Theorem 3.2 
 

An inner product space (V, (•, •)) is a normed linear space with norm 

 
"v" = √(v, v), for all v ∈V . 

Proof. The positive and non degenerate properties of inner products guarantees that " • " also 

has these properties. 

A simple consequence of Hermitian symmetry ((v, w) = (w, v)) and the multiplicative property 

of inner products is the fact that (v, λw) = λ (v, w) whenever v, w ∈ V and λ ∈ C. Using this 

equality, we see that 

"λv" = (λv, λv) = √λλ (v, v) = |λ| • "v". 

 
To show that " • " satisfies the triangle inequality criterion of norms, we utilize the Cauchy- 

Schwartz inequality, which states that if v, w ∈ V , then | (v, w) | ≤ (v, v) (w, w). 

Since both Karen Saxe [9] and Carol Schumacher [10] provide elegant proofs of the Cauchy- 

Schwarz inequality, we will use the Cauchy-Schwarz inequality without providing a proof in 

this article. 

Using the distributive property of inner products, we see that for 

v, w ∈ V , "v + w"2 = (v, v)+ (w, w) + (v, w) + (w, v) . 

 
According to the Cauchy-Schwarz inequality then, 

 
"v + w"2≤ "v"2 + "w"2 + "v""w" + "w""v" = ("v" + "w")2 . 

 
So, "v + w" ≤ "v" + "w". We conclude that " • " is a norm on V.Q 

 

From our exploration of inner product spaces and normed linear spaces, it is useful to pause to 

examine a couple of interesting examples. 

Example 3.1 

In this example, we explore the set of all real, bounded sequences, often termed A∞, and show 

that A∞ is a normed linear space with norm "(xn)"∞ = sup{|xn| : n ∈ N}. 

Since the absolute value function maps from R to R+   {0} (the set of all non-negative real 
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numbers), the function " • "∞ is always positive. Further, if "(xn)"∞ = 0 for some (xn) 

∈A∞, then each term in (xn) must equal zero, as the least upper bound of the set {|xn|: n ∈ N} is 

zero. Similarly, if a sequence (xn) ∈ A∞ is the zero sequence, then, by definition, the supremum 

of the set {xn} must equal zero, which implies that " • "∞ is also non-degenerate. 

 
The essential properties of the supremum and outright worth permit us to additional see that 

for successions (xn); (yn) 2 '1 and any unpredictable number, 

k( xn)k1 = supfj xnj : n 2 Ng = supfj jjxnj : n 2 Ng = j j supfjxnj : n 2 Ng = j j k(xn)k1 ; 

 
what more, 

k(xn + yn)k1 = supfjxn + ynj : n 2 Ng supfjxnj + jynj : n 2 Ng supfjxnj : n 2 Ng + supfjymj : 

m 2 Ng = k(xn)k + k(xn)k , 

Since k(xn)k 1, satises all models for a standard, '1 is a normed straight space. 

 
 

Example 3.2 

Another significant illustration of a normed direct space is the assortment of all ceaseless 

capacities on a shut stretch [a; b], indicated C[a; b], with the supremum standard 

kfk1 = supfjf(x)j : x 2 [a; b]g: 

 
A comparable to contention to the one given above for '1 shows that C[a; b] with standard kfk1 

is for sure a normed straight space. 

 
4. lp Spaces 

 Minkowski's Inequality. 

In the past area, we asserted that l2 is the solitary lp space that is an internal item space. Since 

this is a particularly fascinating property, Prior to doing as such, notwithstanding, we inspect 

one property that is regular to all lp spaces: they are all normed direct spaces. The confirmation 

of this case depends on Minkowski's Inequality. The technique we use to demonstrate 

Minkowski's Inequality includes sunken capacities, and depends on the following theorem. 

Definition 4.1 

 
A capacity g : R+ → R is supposed to be inward on the off chance that it fulfills the disparity 

λg(x) + (1 − λ)g(y) ≤ g(λx + (1 − λ)y), for all x, y ∈ R+ and all λ that fulfill 0 ≤ λ ≤ 1. 

The accompanying figure exhibits a mathematical translation of a sunken capacity. 

Figure 1 illustrates a mathematical understanding of an inward capacity. The bend addresses 

λg(x)+(1−λ)g(y) and the line fragment addresses g(λx)+(1−λ)y. 
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Fig 1 

 

 
Theorem 4.1 Let g : R+ → R be a sunken capacity and characterize a capacity 

f : R2→ R by f (x, y) = y g(x/y). 

Then, when Σi=1 we have f (xi, yi) ≤ f n, i=1 
 

is substantial for all certain genuine numbers x1, . . . , xn and y1, . . . , yn. 

Proof. We continue by acceptance. Let λ = y1/(y1 + y2). Then, at that point the base case is as 

per the following: 

f (x1, y1) + f (x2, y2) = y1g(x1/y1) + y2g(x2/y2) 

 
= (y + y) y1+g(x/y) + y2g(x/y ) 

 
≤ (y1 + y2)g (x1 + x2)/(y1 + y2) 

 
= f (x1 + x2, y1 + y2), 

 
as 1 − λ = y2 . Assume that the imbalance 

 
Σi=1,f (xi, yi) ≤ f k i=1 xi,Σi=1 

 
holds for all certain numbers k stringently not exactly some sure whole number n. Then, at that 

point n 

f (xi, yi) = i=1 n−1 f (xi, yi) + f (xn, yn) i=1 n−1 ≤ f i=1 

 
xi, n−1 i=1 yi! + f (xn, yn) ≤ f xn + Σn n−1 i=1 Σ xi, yn + ! n−1 i=1 yi 

Hence the proof. 
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