A STUDY OF ARCHEMEDEAN SEMIGROUPS

Dr. Siddaramu R

Assistant Professor, Department of Mathematics

Smt & Sri Y.E.R Govt First Grade College, Pavagada, Tumkur, Karnataka, India

Abstract

In this paper the terms, Archemedian semigroups, Strongly Archemedian semigroups are introduced. It is proved that if S is a semipseudo symmetric Archimedean semigroup then it is proved that an ideal M is maximal iff M is trivial and S has no maximal ideals if $S = S^2$. It is also proved that in a semipseudo symmetric semigroup S containing maximal ideals if S has no semisimple elements or S is an Archimedean semigroup then $S \neq S^2$ and $S^2 = M *$ where M* is the intersection all maximal ideals of S. It is also proved that if S is a pseudo integral semigroup then it is proved that S is strongly Archimedean, S is Archimedean, S has no proper completely prime ideals, S has no proper semiprime ideals are equivalent.

1. Introduction

The algebraic theory of semigroups was widely studied by CLIFFOD [2], [3], PETRICH [4] and LJAPIN [5]. The ideal theory in general semigroups was developed by ANJANEYULU [1]. In this paper we introduce the notions of Archemedian semigroups and Strongly Archemedian semigroups. We obtained some characterizations of Archemedian semigroups and Strongly Archemedian semigroups.

2. Preliminaries

- Definition 2.1: A system S = (S, .), where S is a nonempty set and . is an associative binary operation on S, is called a semigroup.
- Definition 2.2 : A semigroup S is said to be commutative provided ab = ba for all $a, b \in S$.
- Definition 2.3: A semigroup S is said to be normal provided aS = Sa for all $a \in S$.
- Definition 2.4: An element a of a semigroup S is said to be a two sided identity or an identity provided as = sa = s for all $s \in S$.
- Definition 2.5: An element a of semigroup S is said to be two sided zero or zero of S provided sa = as = a for all $s \in S$.
- Definition 2.6: A nonempty subset A of a semigroup S is said to be a left ideal (right ideal) of S provided it is both a left ideal and a right ideal of S.
- Definition 2.8: An ideal A of a semigroup S is said to be a proper ideal of S provided $A \neq S$.
- Definition 2.9: An ideal A of a semigroup S is said to be a trivial ideal of S provided S\A is singleton.
- Theorem 2.10: The nonempty intersection of any family of ideals of a semigroup S is an ideal of S.
- Theorem 2.11: The union of any family of ideals of a semigroup S is an ideal of S.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved. Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 2023

Definition 2.12: Let S be a semigroup. The intersection of all ideals of S containing a nonempty set A is called the ideal generated by A. IT is denoted by < A>.

Definition 2.13: An ideal A of a semigroup S is said to be a principal ideal provided A is an ideal generated by single element set. If an ideal A is generated by a, then A is denoted as <a> or J[a].

Definition 2.14: An ideal A of a semigroup S is said to be a maximal ideal provided A is a proper ideal of S and is not properly contained in any proper ideal of S.

Definition 2.15: An ideal A of a semigroup S is said to be a minimal ideal provided A does not contain any ideal of S properly.

Definition 2.16: An ideal A of a semigroup S is said to be a completely prime ideal provided $x, y \in S$, $xy \in A$, implies either $x \in A$ or $y \in A$.

Definition 2.17: An ideal A of a semigroup S is said to be prime ideal provide X, Y are ideals of S, $XY \subseteq A$ implies either $X \subseteq A$ or $Y \subseteq A$.

Theorem 2.18: Every completely prime ideal of a semigroup is prime.

Definition 2.19: If A is an ideal of a semigroup S, then the intersection of all prime ideals containing A is called prime radical or simply radical of A and it is denoted by \sqrt{A} or rad A.

Definition 2.20: An ideal A of a semigroup S is said to be completely semiprime provided $x \in S$, $x^n \in A$ for some natural number n implies $x \in A$.

Theorem 2.21: The nonempty intersection of any family of completely prime ideals of a semigroup is completely semiprime.

Theorem 2.22: If S is a globally idempotent semigroup then every maximal ideal M of S is a prime ideal of S.

Definition 2.23: An ideal A of a semigroup S is said to be semiprime provided X is an ideal of S, $X^n \subseteq A$ for some natural number n implies $x \subseteq A$.

Theorem 2.24: An ideal Q of a semigroup S is a semiprime ideal of S iff $\sqrt{Q} = Q$.

Definition 2.25: An ideal A of a semigroup S is said to be pseudo symmetric provided x, $y \in S$, $xy \in A$ implies $xsy \in A$ for all $s \in S$.

Theorem 2.26: Let A be an ideal of a semigroup S. Then A is completely prime iff A is prime and pseudo symmetric.

Definition 2.27: A semigroup S is said to be pseudo symmetric provided every ideal in S is a pseudo symmetric ideal.

Definition 2.28: An ideal A in a semigroup S is said to be semipseudo symmetric provided for any natural number $n, x \in S, x^n \in A, \Rightarrow \langle x^n \rangle \subset A$.

Theorem 2.29: Every pseudo symmetric ideal of a semigroup is a semipseudo symmetric ideal.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved. Journal UGC CARE Listed (Group-I) Volume 12.

Theroem 2.30: If A is an ideal of a semigroup S, then the following are equivalent.

- A is completey prime (1)
- **(2)** A is prime and pseudo symmetric
- (3) A is prime and semipseudo symmetric.

Theorem 2.31: Let A be a semipseudo symmetric ideal of a semigroup S. Then the following are equivalent.

- A_1 = The intersection of all completely prime ideals of S containing A. 1)
- A_1^1 = The intersection of all minimal completely prime ideals of S containing A. 2)
- 3) A_1^{11} = The minimal completely semiprime ideal of S relative to containing A.
- $A_2 = \{x \in S : x^n \in A \text{ for some natural number } n\}$ 4)
- A_3 = The intersection of all prime ideals of S containing A. 5)
- A_2^1 = The intersection of all minimal prime ideals of S containing A. 6)
- A_1^{11} = The minimal semiprime ideal of S relative to containing A. 7)
- $A_4 = \{x \in S : \langle x \rangle^n \subseteq A \text{ for some natural number } n\}$ 8)

Corollary 2.32: An ideal Q of a semigroup S is a semiprime ideal iff Q is the intersection of all prime ideals of S contains Q.

3. Archimedian Semigroup

Definition 3.1: A semigroup S is said to be an archimedian semigroup provided for any $a,b \in S$ there exists a natural number n such that $a^n \in SbS$.

Definition 3.2: A semigroup S is said to be a strongly archimedean semigroup provided for any $a,b \in S$, there is a natural number n such that $\langle a \rangle^n \subseteq \langle b \rangle$.

Theorem 3.3: Every strongly Archimedean semigroup is an Archimedean semigroup.

Proof: Suppose that S is strongly Archimedean semigroup. Let $a,b \in S$. Since S is strongly Archimedean semigroup, there is a natural number n such that $\langle a \rangle^n \subseteq \langle b \rangle$.

Now $a^n \in \langle a \rangle^n \subseteq \langle b \rangle \subseteq SbS$. Therefore, S is an Archimedean semigroup.

Theorem 3.4: If S is a semipseudo symmetric semigroup, then the following are true.

- 1) $T = \{a \in S : \sqrt{\langle a \rangle} \neq S\}$ is either empty or a completely prime ideal.
- 2) S\T is either empty or an Archimedean subsemigroup of S.

Proof: (1) If T is an empty set, then there is nothing to prove. If T is nonempty, then clearly T is an ideal of S. Let $a,b \in S$ and $ab \in T$. Suppose if possible $a \notin T, b \notin T$. Then $\sqrt{\langle a \rangle} = S$ and $\sqrt{\langle b \rangle} = S$.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 2023

Since
$$ab \in T$$
, then $\sqrt{\langle ab \rangle} \neq S$. Now $S = \sqrt{\langle a \rangle} \cap \sqrt{\langle b \rangle} = \sqrt{\langle ab \rangle} \neq S$.

It is a contradiction. Thus $a \in T$ or $b \in T$. \therefore T is a completely prime ideal.

(2) Since T is a completely prime ideal, S\T is either empty or a subsemigroup of S.

Let
$$a,b \in S \setminus T$$
. Then $\sqrt{\langle a \rangle} = \sqrt{\langle b \rangle} = S$. Now $b \in \sqrt{\langle a \rangle}$, by the theorem 2.31.

$$b^n \in \langle a \rangle$$
 for some $n \in \mathbb{N}$. So $b^{n-2} \in SaS \Rightarrow b^{n-2} = s$ at for some $s, t \in S$.

If either s or $t \in T$, then $b^{n-2} \in T$ and hence $b \in T$. IT is a contradiction. Hence $s, t \in S \setminus T$.

Now $b^{n+2} = s$ at $\in (S \setminus T)a(S \setminus T)$. Hence $S \setminus T$ is an Archimedean subsemigroup of S.

Theorem 3.5: If S is a semipseudo symmetric semigroup, then the following are equivalent.

- 1) S is a strongly Archimedean semigroup.
- 2) S is an Archimedean semigroup.
- 3) S has no proper completely prime ideals.
- 4) S haws no proper completely semiprime ideals.
- 5) S has no proper prime ideals.
- 6) S has no proper semi prime ideals.

Proof: (1) \Rightarrow (2): Suppose that S is a strongly Archimedean semigroup. By theorem 3.3, S is an Archimedean semigroup.

 $(2) \Rightarrow (3)$: Suppose that S is an Archimedean semigroup. Let P be any completely prime ideal of S.

Let $a \in S, b \in P$. Since S is an Archimedean semigroup, there exists a natural number n such that $a^n \in SbS \subseteq P \Rightarrow a^n \in P \Rightarrow a \in P$.

$$\therefore S \subseteq P$$
 Clearly $P \subseteq S$. Thus $P = S$.

 \therefore S has no proper completely prime ideals.

By theorem 2.21, corollary 2.26, and theorem 2.30; (3), (4), (5) and (6) are equivalent.

 $(5) \Rightarrow (1)$: S has no proper prime ideals. Let $a,b \in S$. Since S has no proper prime ideals, $\sqrt{\langle b \rangle} = S$. Now $a \in S = \sqrt{\langle b \rangle} \Rightarrow a^n \in \langle b \rangle$ for some natural number n. Since S is a semipseudo symmetric semigroup, $\langle b \rangle$ is a semipseudo symmetric ideal and hence $a^n \in \langle b \rangle \Rightarrow \langle b \rangle^n \subset \langle b \rangle$. Thus S is a strongly Archimedean semigroup. Hence the given conditions are equivalent.

Corollary 3.6: A commutative semigroup S is Archimedean iff S has no proper prime ideals.

Proof: Since S is a commutative semigroup, S is a semipseudo symmetric semigroup. By theorem 3.5, S is Archimedean iff S has no proper prime ideals.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved. Journal UGC CARE Listed (Group-I) Volume 12,

Theorem 3.7: If M is a nontrivial maximal ideal of a semipseudo symmetric semigroup S then M is prime.

Proof: Suppose if possible M is not prime. Then there exists $a,b \in S \setminus M$ such that $\langle a \rangle \langle b \rangle \subset M$. Now for any $x \in S \setminus M$, we have $S = M \cup \langle b \rangle = M \cup \langle x \rangle$. Since $b, x \in S \setminus M$, we have $b \in \langle x \rangle$ and $x \in \langle b \rangle$. So $\langle b \rangle = \langle x \rangle$. Therefore, $\langle b \rangle^2 \subseteq M$. If $a \neq b$, then a = sbtfor some $s, l \in S^1$ and one of them is not an empty symbol. So $a \in \langle s \rangle \langle b \rangle \langle f \rangle$. If either $s \in M$ or $t \in M$ then $a \in M$. It is a contradiction.

If $s \notin M$ and $t \notin M$, then $\langle s \rangle \langle b \rangle \subset \langle b \rangle^2 \subset M$.

 $\therefore a \in \langle s \rangle \langle t \rangle \subseteq M$. $\therefore a \in M$. It is a contraction. Thus a = b and hence M is trivial, which is not true. So M is prime.

Definition 3.8: An element a of a semigroup S is said to be semisimple provided

$$a \in \langle a \rangle^2$$
, that is $\langle a \rangle^2 = \langle a \rangle$

Theorem 3.9: If S is a semipseudosymmetric semigroup and contains a nontrivial maximal ideal then S contains semisimple elements.

Proof: Let M be a nontrivial maximal ideal of S. By theorem 3.7, M is prime.

Let $a \in S \setminus M$. Then $\langle a \rangle \not\subset M$. Since M is maximal, $M \cup \langle a \rangle = S$.

If $\langle a \rangle^2 \subset M$ then $\langle a \rangle \subset M$ which is not true. So $\langle a \rangle^2 \not\subset M$.

Since M is maximal, $M \cup \langle a \rangle^2 = S$. Now $M \cup \langle a \rangle = M \cup \langle a \rangle^2$.

Therefore, $a \in \langle a \rangle^2$ and hence a is semisimple.

Theorem 3.10: Let S be a semipseudo symmetric Archimedean semigroup. Then an ideal M is maximal iff it is trivial, and S has no maximal ideals if $S = S^2$.

Proof: If M is trivial, then clearly M is maximal ideal. Conversely suppose that M is maximal. Suppose if possible M is nontrivial. By theorem 3.7, M is prime. Since S is an Archimedean Semigroup, by theorem 3.5, S has no prime ideals. It is a contradiction. So M is trivial. If $S = S^2$, then by theorem 2.22 every maximal ideal is prime and hence S has no maximal ideals.

Theorem 3.11: Let S be a semipseudo symmetric semigroup containing maximal ideals. If either S has no semisimple elements or S is an Archimedean semigroup, then $S \neq S^2$ and $S^2 = M *$ where M * denotes the intersection of all maximal ideals.

Proof: Suppose that S has no semisimple elements. Then by corollary 3.9, every maximal ideal is trivial. So if M is maximal, then $S = M \cup \{a\}, a \notin M$. Suppose $a \in S^2$.

Then $a \in S^2 \implies a = bc$ for some $b, c \in S$.

If $b \neq a$ then $b \in M$ and hence $bc \in M$ (Since M is Maximal) $\Rightarrow a \in M$. It is a contradiction.

 $\therefore b = a$. Similarly we can prove c = a. $\therefore a = bc = a^2$. $\therefore a$ is semisimple.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved. Journal UGC CARE Listed (Group-I) Volume 12.

It is a contradiction. $\therefore a \notin S^2, \dots S \neq S^2$ and $S^2 \subset M$. Let $t \in M *$ and $t \notin S^2$.

 $\Rightarrow as \neq 1, sa \neq t \text{ for all } s \in S \Rightarrow as, sa \in S \setminus \{t\} \Rightarrow S \setminus \{t\} \text{ is an ideal.}$ a maximal ideal. Hence $t \in S \setminus \{t\}$.

ion. Therefore, $M*\subset S^2$. Hence $S^2=M*$.

s is an Archimedean semigroup. Since S has maximal ideals, by theorem 3.10, $S \neq S^2$. Suppose if possible $x \in S^2 \setminus M^*$. Then there exists a maximal ideal M, such that $x \in M$. So by theorem 3.10, $M = S \setminus \{x\}$.

Since $x \in S^2$, x = yz for some $y, z \in S$. If either y or $z \in M$, then $x \in M$. It is a contradiction. Therefore, y = z = x and hence $x = x^2$. Let $a, b \in S$, $a, b \in M$. Suppose if possible.

 $a \notin M, b \notin M$. Then a = x, b = x. Therefore, $ab = xx = x \notin M$. It is a contradiction. Thus M is prime by theorem 3.5, S has no proper prime ideals. It is a contradiction.

Thus $S^2 \subset M *$. As above, we can show that $M * \subset S^2$. Therefore, $S^2 = M *$.

Corollary 3.12: Let S be a commutative semigroup containing maximal ideals. If either S has no idempotents or S is an Archimedean semigroup, then $S \neq S^2$ and $S^2 = M^*$

Proof: Suppose that S has no idempotents. If S contains a semisimple element a then a is regular.

Hence there exists and element $x \in S$ such that axa = a. Now ax is an idempotent in S. It is a contradiction. So S has no semisimple elements. Then by theorem 3.11, we have $S \neq S^2$ and $S^2 = M *$.

2. References

- (1) Anjaneyulu. A, and Ramakotaiah, D., On a class of semigroups. Simon stevin, Vol 54 (1980), 241-249.
- (2) Anjaneyulu. A., Structure and ideal theory of Duo semigroups, Semigroup Forum, Vol. 22 (1981), 257-276.
- (3) Anjaneyulu. A., Semigroup in which prime Ideals are maximal, Semigroup Forum Vol. 22 (1981), 151-158.
- (4) Clifford. A.H. and Preston, G.B., The algebraic theory of semigroups, Vol-1, American Math. Society, Providence (1961).
- (5) Clifford. A.H. and Preston. G.B., The algebraic theory of semigroups. Vol-II. American Math. Society, Providence (1967).
- (6) Giri. R.D. and Wazalwar, A.K. Prime ideals and prime radicals in non-commutative semigroup, Kyungpook, Mathematical Journal Vol. 33 (1993), no. 1, 37 – 48.
- (7) Hanumantha Rao G., Anjaneyulu A, and Gangadhara Rao. A, On ideals of termary semigroups – Mathematical sciences international journal, ISSN 2248-9037.